CBS 2019
CBSMD教育中心
中 文

ASCVD Prevention

Abstract

Recommended Article

Polygenic Scores to Assess Atherosclerotic Cardiovascular Disease Risk: Clinical Perspectives and Basic Implications Value of Coronary Artery Calcium Scanning in Association With the Net Benefit of Aspirin in Primary Prevention of Atherosclerotic Cardiovascular Disease The Science Underlying COVID-19: Implications for the Cardiovascular System Association of Circulating Monocyte Chemoattractant Protein-1 Levels With Cardiovascular Mortality: A Meta-analysis of Population-Based Studies Antithrombotic Therapy for Atherosclerotic Cardiovascular Disease Risk Mitigation in Patients With Coronary Artery Disease and Diabetes Mellitus Initial Invasive or Conservative Strategy for Stable Coronary Disease Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When In patients with stable coronary heart disease, low-density lipoprotein-cholesterol levels < 70 mg/dL and glycosylated hemoglobin A1c < 7% are associated with lower major cardiovascular events

Review Article03 January 2020

JOURNAL:Eur Heart J. Article Link

Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis

L Faroux, S Chen, J Rodés-Cabau et al. Keywords: heart failure; left bundle-branch block; proton pump inhibitors; persistence pacemaker;permanent transcatheter aortic-valve implantation

ABSTRACT


AIMS - The clinical impact of new-onset persistent left bundle branch block (NOP-LBBB) and permanent pacemaker implantation (PPI) on transcatheter aortic valve replacement (TAVR) recipients remains controversial. We aimed to evaluate the impact of (i) periprocedural NOP-LBBB and PPI post-TAVR on 1-year all-cause death, cardiac death, and heart failure hospitalization and (ii) NOP-LBBB on the need for PPI at 1-year follow-up.

 

METHODS AND RESULTS - We performed a systematic search from PubMed and EMBASE databases for studies reporting raw data on 1-year clinical impact of NOP-LBBB or periprocedural PPI post-TAVR. Data from 30 studies, including 7792 patients (12 studies) and 42 927 patients (21 studies) for the evaluation of the impact of NOP-LBBB and PPI after TAVR were sourced, respectively. NOP-LBBB was associated with an increased risk of all-cause death [risk ratio (RR) 1.32, 95% confidence interval (CI) 1.171.49; P < 0.001], cardiac death (RR 1.46, 95% CI 1.201.78; P < 0.001), heart failure hospitalization (RR 1.35, 95% CI 1.051.72; P = 0.02), and PPI (RR 1.89, 95% CI 1.582.27; P < 0.001) at 1-year follow-up. Periprocedural PPI after TAVR was associated with a higher risk of all-cause death (RR 1.17, 95% CI 1.111.25; P < 0.001) and heart failure hospitalization (RR 1.18, 95% CI 1.031.36; P = 0.02). Permanent pacemaker implantation was not associated with an increased risk of cardiac death (RR 0.84, 95% CI 0.671.05; P = 0.13).

 

CONCLUSION - NOP-LBBB and PPI after TAVR are associated with an increased risk of all-cause death and heart failure hospitalization at 1-year follow-up. Periprocedural NOP-LBBB also increased the risk of cardiac death and PPI within the year following the procedure. Further studies are urgently warranted to enhance preventive measures and optimize the management of conduction disturbances post-TAVR.