CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Frailty and Bleeding in Older Adults Undergoing TAVR or SAVR: Insights From the FRAILTY-AVR Study Transcatheter aortic-valve replacement with a self-expanding prosthesis Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion Health Status after Transcatheter vs. Surgical Aortic Valve Replacement in Low-Risk Patients with Aortic Stenosis Incidence and Outcomes of Surgical Bailout During TAVR : Insights From the STS/ACC TVT Registry Suture- or Plug-Based Large-Bore Arteriotomy Closure: A Pilot Randomized Controlled Trial Contemporary real-world outcomes of surgical aortic valve replacement in 141,905 low-risk, intermediate-risk, and high-risk patients Prevalence and Outcomes of Concomitant Aortic Stenosis and Cardiac Amyloidosis

Review Article2020 Aug;13(8):e010460.

JOURNAL:Circ Cardiovasc Imaging . Article Link

Association of White Matter Hyperintensities and Cardiovascular Disease: The Importance of Microcirculatory Disease

F Moroni, E Ammirati, AH Hainsworth et al. Keywords: arteries; brain; heart failure; microcirculation; stroke

ABSTRACT

Cardiac and cerebrovascular diseases are currently the leading causes of mortality and disability worldwide. Both the heart and brain display similar vascular anatomy, with large conduit arteries running on the surface of the organ providing tissue perfusion through an intricate network of penetrating small vessels. Both organs rely on fine tuning of local blood flow to match metabolic demand. Blood flow regulation requires adequate functioning of the microcirculation in both organs, with loss of microvascular function, termed small vessel disease (SVD) underlying different potential clinical manifestations. SVD in the heart, known as coronary microvascular dysfunction, can cause chronic or acute myocardial ischemia and may lead to development of heart failure. In the brain, cerebral SVD can cause an acute stroke syndrome known as lacunar stroke or more subtle pathological alterations of the brain parenchyma, which may eventually lead to neurological deficits or cognitive decline in the long term. Coronary microcirculation cannot be visualized in vivo in humans, and functional information can be deduced by measuring the coronary flow reserve. The diagnosis of cerebral SVD is largely based on brain magnetic resonance imaging, with white matter hyperintensities, microbleeds, and brain atrophy reflecting key structural changes. There is evidence that such structural changes reflect underlying cerebral SVD. Here, we review interactions between SVD and cardiovascular risk factors, and we discuss the evidence linking cerebral SVD with large vessel atheroma, atrial fibrillation, heart failure, and heart valve disease.