CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study CSC Expert Consensus on Principles of Clinical Management of Patients with Severe Emergent Cardiovascular Diseases during the COVID-19 Epidemic Screening for Atrial Fibrillation With ECG: USPSTF Recommendation Long-Term Outcomes in Women and Men Following Percutaneous Coronary Intervention Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials Long-term Survival following Multivessel Revascularization in Patients with Diabetes (FREEDOM Follow-On Study) A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial The HACD4 haplotype as a risk factor for atherosclerosis in males

Original Research2016 Dec;255:73-79.

JOURNAL:Atherosclerosis. Article Link

Plaque progression assessed by a novel semi-automated quantitative plaque software on coronary computed tomography angiography between diabetes and non-diabetes patients: A propensity-score matching study

Nakanishi R, Ceponiene I, Osawa K et al. Keywords: coronary computed tomography angiography; Diabetes; Plaque progression

ABSTRACT


BACKGROUND AND AIMS - We aimed at investigating whether diabetes is associated with progression in coronary plaque components.

 

METHODS - We identified 142 study subjects undergoing serial coronary computed tomography angiography. The resulting propensity score was applied 1:1 to match diabetic patients to non-diabetic patients for clinical risk factors, prior coronary stenting, coronary arterycalcium (CAC) score and the serial scan interval, resulting in the 71 diabetes and 71 non-diabetes patients. Coronary plaque (total, calcified, non-calcified including fibrous, fibrous-fatty and low attenuation plaque [LAP]) volume normalized by total coronary arterylength was measured using semi-automated plaque software and its change overtime between diabetic and non-diabetic patients was evaluated.

 

RESULTS - The matching was successful without significant differences between the two groups in all matched variables. The baseline volumes in each plaque also did not differ. During a mean scan interval of 3.4 ± 1.8 years, diabetic patients showed a 2-fold greater progression in normalized total plaque volume (TPV) than non-diabetes patients (52.8 mm3vs. 118.3 mm3, p = 0.005). Multivariable linear regression model revealed that diabetes was associated with normalized TPV progression (β 72.3, 95%CI 24.3-120.3). A similar trend was observed for the non-calcified components, but not calcified plaque (β 3.8, 95%CI -27.0-34.7). Higher baseline CAC score was found to be associated with total, non-calcified and calcified plaque progression. However, baseline non-calcified volume but not CAC score was associated with LAP progression.

 

CONCLUSIONS - The current study among matched patients indicates diabetes is associated with a greater plaque progression. Our results show the need for strict adherence of diabetic patients to the current preventive guidelines.

 

Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.