CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity Mode of Death in Heart Failure With Preserved Ejection Fraction 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Hs-cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD - A comparative analysis from the KAROLA study Validation of High-Risk Features for Stent-Related Ischemic Events as Endorsed by the 2017 DAPT Guidelines Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond Left Ventricular Assist Devices for Lifelong Support Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie? A Randomized Trial Comparing the NeoVas Sirolimus-Eluting Bioresorbable Scaffold and Metallic Everolimus-Eluting Stents 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society

Original Research2016 Dec;255:73-79.

JOURNAL:Atherosclerosis. Article Link

Plaque progression assessed by a novel semi-automated quantitative plaque software on coronary computed tomography angiography between diabetes and non-diabetes patients: A propensity-score matching study

Nakanishi R, Ceponiene I, Osawa K et al. Keywords: coronary computed tomography angiography; Diabetes; Plaque progression

ABSTRACT


BACKGROUND AND AIMS - We aimed at investigating whether diabetes is associated with progression in coronary plaque components.

 

METHODS - We identified 142 study subjects undergoing serial coronary computed tomography angiography. The resulting propensity score was applied 1:1 to match diabetic patients to non-diabetic patients for clinical risk factors, prior coronary stenting, coronary arterycalcium (CAC) score and the serial scan interval, resulting in the 71 diabetes and 71 non-diabetes patients. Coronary plaque (total, calcified, non-calcified including fibrous, fibrous-fatty and low attenuation plaque [LAP]) volume normalized by total coronary arterylength was measured using semi-automated plaque software and its change overtime between diabetic and non-diabetic patients was evaluated.

 

RESULTS - The matching was successful without significant differences between the two groups in all matched variables. The baseline volumes in each plaque also did not differ. During a mean scan interval of 3.4 ± 1.8 years, diabetic patients showed a 2-fold greater progression in normalized total plaque volume (TPV) than non-diabetes patients (52.8 mm3vs. 118.3 mm3, p = 0.005). Multivariable linear regression model revealed that diabetes was associated with normalized TPV progression (β 72.3, 95%CI 24.3-120.3). A similar trend was observed for the non-calcified components, but not calcified plaque (β 3.8, 95%CI -27.0-34.7). Higher baseline CAC score was found to be associated with total, non-calcified and calcified plaque progression. However, baseline non-calcified volume but not CAC score was associated with LAP progression.

 

CONCLUSIONS - The current study among matched patients indicates diabetes is associated with a greater plaque progression. Our results show the need for strict adherence of diabetic patients to the current preventive guidelines.

 

Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.