CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions Multimodality imaging in cardiology: a statement on behalf of the Task Force on Multimodality Imaging of the European Association of Cardiovascular Imaging A Novel Algorithm for Treating Chronic Total Coronary Artery Occlusion Individualizing Revascularization Strategy for Diabetic Patients With Multivessel Coronary Disease Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management Impact of lesion complexity on peri-procedural adverse events and the benefit of potent intravenous platelet adenosine diphosphate receptor inhibition after percutaneous coronary intervention: core laboratory analysis from 10 854 patients from the CHAMPION PHOENIX trial 2019 ESC Guidelines for the management of patients with supraventricular tachycardia The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC): Developed in collaboration with the Association for European Paediatric and Congenital Cardiology (AEPC)he management of patients with) Advances in Coronary No-Reflow Phenomenon-a Contemporary Review Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations

Original Research2008 Aug;4(2):181-3.

JOURNAL:EuroIntervention. Article Link

Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations

Muller O, Windecker S, Cuisset T et al. Keywords: complication; no-reflow phenomenon; coronary perforation

ABSTRACT


The no-reflow phenomenon has been defined in 2001 by Eeckhout and Kern as inadequate myocardial perfusion through a given segment of the coronary circulation without angiographic evidence of mechanical vessel obstruction1. Rates of cardiac death and non-fatal cardiac events are increased in patients with compared to those without no-reflow2,3. The term “no reflow” encompasses the slow-flow, slow-reflow, no-flow and low-flow phenomenon. Its incidence depends on the clinical setting, ranging from as low as 2% in elective native coronary percutaneous coronary interventions (PCI) to 20% in saphenous venous graft (SVG) PCI and up to 26% in acute myocardial infarction (AMI) mechanical reperfusion4-6. Depending on the clinical setting, the mechanism of the no-reflow phenomenon differs. Distal embolisation and ischaemic-reperfusion cell injury prevail in patients with AMI, microvascular spasm and embolisation of aggregated platelets occur in native coronary PCI, whereas embolisation of degenerated plaque elements, including thrombotic and atherosclerotic debris are encountered during SVG PCI7. The no-reflow phenomenon is classified according to its pathophysiology with potential implications for its treatment in the categories provided in Table 1.