CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Society of cardiac angiography and interventions: suggested management of the no-reflow phenomenon in the cardiac catheterization laboratory Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review Coronary Angiography after Cardiac Arrest — The Right Timing or the Right Patients? Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: Comparison of five contrast media Utilization and programming of an automatic MRI recognition feature for cardiac rhythm management devices PCI and CABG for Treating Stable Coronary Artery Disease Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion: The DECISION-CTO Trial Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion The REVASC Trial The Year in Cardiovascular Medicine 2020: Coronary Intervention

Clinical TrialFirst online: 19 June 2017

JOURNAL:Int J Cardiovasc Imaging. Article Link

Stent fracture is associated with a higher mortality in patients with type-2 diabetes treated by implantation of a second-generation drug-eluting stent

Z Ge, ZZ Liu, SL Chen et al Keywords: type 2 diabetes; drug-eluting stent; stent fractur

ABSTRACT

Type 2 diabetes correlates with clinical events after the implantation of a second-generation drug-eluting stent (DES). The rate and prognostic value of stent fracture (SF) in patients with diabetes who underwent DES implantation remain unknown. A total of 1160 patients with- and 2251 without- diabetes, who underwent surveillance angiography at 1 year after DES implantation between June 2004 and August 2014, were prospectively studied. The primary endpoints included the incidence of SF and a composite major adverse cardiac event [MACE, including myocardial infarction (MI), cardiac death, and target-vessel revascularization (TVR)] at 1-year follow-up and at the end of follow-up for overall patients, and target lesion failure [TLF, including cardiac death, target vessel myocardial infarction (TVMI) and target lesion revascularization (TLR)] at the end of study for SF patients. In general, diabetes was associated with a higher rate of MACE at 1-year (18.4 vs. 12.9%) and end of follow-up (24.0 vs. 18.6%, allp< 0.001), compared with those in patients who did not have diabetes. The 1-year SF rate was comparable among patients with diabetes (n = 153, 13.2%) and non-diabetic patients (n = 273, 12.1%,p> 0.05). Diabetic patients with SF had a 2.6-fold increase of SF-related cardiac death at the end of study and threefold increase of re-repeat TLR when compared with non-diabetic patients with SF (5.9 vs. 2.2%,p= 0.040; 6.5 vs. 2.2%,p= 0.032), respectively. Given the fact that diabetes is correlated with increased MACE rate, SF in diabetic patients translates into differences in mortality and re-repeat TLR compared with the non-diabetic group.