CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels Extracorporeal Ultrafiltration for Fluid Overload in Heart Failure: Current Status and Prospects for Further Research Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series Robotics in percutaneous cardiovascular interventions 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016

Volume 74, Issue 16, October 2019

JOURNAL:J Am Coll Cardiol. Article Link

Nonproportional Hazards for Time-to-Event Outcomes in Clinical Trials: JACC Review Topic of the Week

J Gregson, L Sharples, GW Stone et al. Keywords: clinical trials; Cox proportional hazards; nonproportional hazards; statistics; time-to-event outcomes; trial design

ABSTRACT


Most major clinical trials in cardiology report time-to-event outcomes using the Cox proportional hazards model so that a treatment effect is estimated as the hazard ratio between groups, accompanied by its 95% confidence interval and a log-rank p value. But nonproportionality of hazards (non-PH) over time occurs quite often, making alternative analysis strategies appropriate. This review presents real examples of cardiology trials with different types of non-PH: an early treatment effect, a late treatment effect, and a diminishing treatment effect. In such scenarios, the relative merits of a Cox model, an accelerated failure time model, a milestone analysis, and restricted mean survival time are examined. Some post hoc analyses for exploring any specific pattern of non-PH are also presented. Recommendations are made, particularly regarding how to handle non-PH in pre-defined Statistical Analysis Plans, trial publications, and regulatory submissions.