CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

The Astronaut Cardiovascular Health and Risk Modification (Astro-CHARM) Coronary Calcium Atherosclerotic Cardiovascular Disease Risk Calculator Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk Multimodality imaging in cardiology: a statement on behalf of the Task Force on Multimodality Imaging of the European Association of Cardiovascular Imaging Know Diabetes by Heart: A Partnership to Improve Cardiovascular Outcomes in Type 2 Diabetes Mellitus ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons Association of Coronary Anatomical Complexity With Clinical Outcomes After Percutaneous or Surgical Revascularization in the Veterans Affairs Clinical Assessment Reporting and Tracking Program Chronic Total Occlusion Percutaneous Coronary Intervention: Evidence and Controversies Cardiorespiratory Fitness and Mortality in Healthy Men and Women Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease In-Hospital Costs and Costs of Complications of Chronic Total Occlusion Angioplasty Insights From the OPEN-CTO Registry

Original Research2022 May, 79 (21) 2097–2115

JOURNAL:J Am Coll Cardiol. Article Link

Circadian Cadence and NR1D1 Tune Cardiovascular Disease

YC Zhao , XY Lu , F W et al.

ABSTRACT

BACKGROUND - Shift work is associated with increased risk of acute myocardial infarction (AMI) and worsened prognosis. However, the mechanisms linking shift work and worsened prognosis in AMI remain unclear.

 

OBJECTIVES - This study sought to investigate the impact of shift work on reperfusion injury, a major determinant of clinical outcomes in AMI.

 

METHODS - Study patient data were obtained from the database of the EARLY-MYO-CMR (Early Assessment of Myocardial Tissue Characteristics by CMR in STEMI) registry, which was a prospective, multicenter registry of patients with ST-segment elevation myocardial infarction (STEMI) undergoing cardiac magnetic resonance (CMR) imaging after reperfusion therapy. The primary endpoint was CMR-defined post-reperfusion infarct size. A secondary clinical endpoint was the composite of major adverse cardiac events (MACE) during follow-up. Potential mechanisms were explored with the use of preclinical animal AMI models.

 

RESULTS - Of 706 patients enrolled in the EARLY-MYO-CMR registry, 412 patients with STEMI were ultimately included. Shift work was associated with increased CMR-defined infarct size (β = 5.94%; 95% CI: 2.94-8.94; P < 0.0001). During a median follow-up of 5.0 years, shift work was associated with increased risks of MACE (adjusted HR: 1.92; 95% CI: 1.12-3.29; P = 0.017). Consistent with clinical findings, shift work simulation in mice and sheep significantly augmented reperfusion injury in AMI. Mechanism studies identified a novel nuclear receptor subfamily 1 group D member 1/cardiotrophin-like cytokine factor 1 axis in the heart that played a crucial role in mediating the detrimental effects of shift work on myocardial injury.

 

CONCLUSIONS - The current study provided novel findings that shift work increases myocardial infarction reperfusion injury. It identified a novel nuclear receptor subfamily 1 group D member 1/cardiotrophin-like cytokine factor 1 axis in the heart that might play a crucial role in mediating this process. (Early Assessment of Myocardial Tissue Characteristics by CMR in STEMI [EARLY-MYO-CMR] registry; NCT03768453)