CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Society of cardiac angiography and interventions: suggested management of the no-reflow phenomenon in the cardiac catheterization laboratory Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review Coronary Angiography after Cardiac Arrest — The Right Timing or the Right Patients? Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: Comparison of five contrast media Utilization and programming of an automatic MRI recognition feature for cardiac rhythm management devices PCI and CABG for Treating Stable Coronary Artery Disease Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion: The DECISION-CTO Trial A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion The REVASC Trial Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention The Year in Cardiovascular Medicine 2020: Coronary Intervention

Original Research2017 Nov 14;70(20):2504-2515.

JOURNAL:J Am Coll Cardiol. Article Link

A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration

Natsumeda M, Florea V, Hare JM et al. Keywords: allogeneic; cardiac stem cell; ischemic cardiomyopathy; mesenchymal stem cell

ABSTRACT


BACKGROUND - The combination of autologous mesenchymal stem cells (MSCs) and cardiac stem cells(CSCs) synergistically reduces scar size and improves cardiac function in ischemic cardiomyopathy. Whereas allogeneic (allo-)MSCs are immunoevasive, the capacity of CSCs to similarly elude the immune system remains controversial, potentially limiting the success of allogeneic cell combination therapy (ACCT).


OBJECTIVES - This study sought to test the hypothesis that ACCT synergistically promotes cardiac regenerationwithout provoking immunologic reactions.


METHODS - Göttingen swine with experimental ischemic cardiomyopathy were randomized to receive transendocardial injections of allo-MSCs + allo-CSCs (ACCT: 200 million MSCs/1 million CSCs, n = 7), 200 million allo-MSCs (n = 8), 1 million allo-CSCs (n = 4), or placebo (Plasma-Lyte A, n = 6). Swine were assessed by cardiac magnetic resonance imaging and pressure volume catheterization. Immune response was tested by histologic analyses.


RESULTS - Both ACCT and allo-MSCs reduced scar size by -11.1 ± 4.8% (p = 0.012) and -9.5 ± 4.8% (p = 0.047), respectively. Only ACCT, but not MSCs or CSCs, prevented ongoing negative remodeling by offsetting increases in chamber volumes. Importantly, ACCT exerted the greatest effect on systolic function, improving the end-systolic pressure-volume relation (+0.98 ± 0.41 mm Hg/ml; p = 0.016). The ACCT group had more phospho-histone H3+ (a marker of mitosis) cardiomyocytes (p = 0.04), and noncardiomyocytes (p = 0.0002) than did the placebo group in some regions of the heart. Inflammatory sites in ACCT and MSC-treated swine contained immunotolerant CD3+/CD25+/FoxP3+ regulatory T cells (p < 0.0001). Histologic analysis showed absent to low-grade inflammatory infiltrates without cardiomyocyte necrosis.


CONCLUSIONS - ACCT demonstrates synergistic effects to enhance cardiac regeneration and left ventricular functional recovery in a swine model of chronic ischemic cardiomyopathy without adverse immunologic reaction. Clinical translation to humans is warranted.


Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.