CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Plaque progression assessed by a novel semi-automated quantitative plaque software on coronary computed tomography angiography between diabetes and non-diabetes patients: A propensity-score matching study Efficacy and safety of rosuvastatin vs. atorvastatin in lowering LDL cholesterol : A meta-analysis of trials with East Asian populations State of the Art in Noninvasive Imaging of Ischemic Heart Disease and Coronary Microvascular Dysfunction in Women: Indications, Performance, and Limitations Rare Genetic Variants Associated With Sudden Cardiac Death in Adults 2-Year Outcomes After Stenting of Lipid-Rich and Nonrich Coronary Plaques Prospective Elimination of Distal Coronary Sinus to Left Atrial Connection for Atrial Fibrillation Ablation (PRECAF) Randomized Controlled Trial Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation Nonproportional Hazards for Time-to-Event Outcomes in Clinical Trials: JACC Review Topic of the Week Thin Composite-Wire-Strut Zotarolimus-Eluting Stents Versus Ultrathin-Strut Sirolimus-Eluting Stents in BIONYX at 2 Years Routine Continuous Electrocardiographic Monitoring Following Percutaneous Coronary Interventions

Review Article2017 Jul 11;70(2):212-229.

JOURNAL:J Am Coll Cardiol. Article Link

Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series

Münzel T, Camici GG, Kovacic JC et al. Keywords: cardiac; reactive oxygen species; vascular

ABSTRACT


Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.