CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

A Test in Context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure Geometry as a Confounder When Assessing Ventricular Systolic Function: Comparison Between Ejection Fraction and Strain Long-Term Outcomes in Women and Men Following Percutaneous Coronary Intervention Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction Association Between Living in Food Deserts and Cardiovascular Risk 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure Burden of 30-Day Readmissions After Percutaneous Coronary Intervention in 833,344 Patients in the United States: Predictors, Causes, and Cost

Review Article2017 Sep 26;70(13):1618-1636.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiopulmonary Exercise Testing: What Is its Value?

Guazzi M, Bandera F, Ozemek C et al. Keywords: https://www.sciencedirect.com/science/article/pii/S0735109717392501?via%3Dihub

ABSTRACT


Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.