CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction Association of Coronary Anatomical Complexity With Clinical Outcomes After Percutaneous or Surgical Revascularization in the Veterans Affairs Clinical Assessment Reporting and Tracking Program Coronary Angiography after Cardiac Arrest without ST-Segment Elevation Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk European Bifurcation Club White Paper on Stenting Techniques for Patients With Bifurcated Coronary Artery Lesions Appropriate Use Criteria and Health Status Outcomes Following Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From the OPEN-CTO Registry Mechanisms and diagnostic evaluation of persistent or recurrent angina following percutaneous coronary revascularization The Prognostic Value of Exercise Echocardiography After Percutaneous Coronary Intervention Dynamic atrioventricular delay programming improves ventricular electrical synchronization as evaluated by 3D vectorcardiography

Original Research2017 Sep 12;70(11):1339-1348.

JOURNAL:J Am Coll Cardiol. Article Link

Hemodynamic Response to Nitroprusside in Patients With Low-Gradient Severe Aortic Stenosis and Preserved Ejection Fraction

Lloyd JW, Nishimura RA, Eleid MF et al. Keywords: aortic stenosis; catheterization; low gradient; nitroprusside; pathophysiology

ABSTRACT


BACKGROUND Low-gradient severe aortic stenosis (LGSAS) with preserved ejection fraction (EF) is incompletely understood. The influence of arterial afterload and diastolic dysfunction on the hemodynamic presentation of LGSAS remains unknown.


OBJECTIVES - The authors sought to determine the acute hemodynamic response to sodium nitroprusside in LGSAS with preserved EF.


METHODS - Symptomatic patients with LGSAS and preserved EF underwent cardiac catheterization with comparison of hemodynamic measurements before and after nitroprusside.


RESULTS - Forty-one subjects (25 with low flow [LF], stroke volume index [SVI] ≤35 ml/m2, 16 with normal flow [NF]) were included. At baseline, LF patients had lower total arterial compliance (0.36 ± 0.12 ml/m2/mm Hg vs. 0.48 ± 0.16 ml/m2/mm Hg; p = 0.01) and greater effective arterial elastance (2.77 ± 0.84 mm Hg · m2/ml vs. 1.89 ± 0.82 mm Hg · m2/ml; p = 0.002). In all patients, nitroprusside reduced elastance, left ventricular filling pressures, and pulmonary artery pressures and improved compliance (p < 0.05). Aortic valve area increased to ≥1.0 cm2 in 6 LF (24%) and 4 NF (25%) subjects. Change in SVI with nitroprusside varied inversely to baseline SVI and demonstrated improvement in LF only (3 ± 6 ml/m2; p = 0.02).


CONCLUSIONS - Nitroprusside reduces afterload and left ventricular filling pressures in patients with LGSAS and preserved EF, enabling reclassification to moderate stenosis in 25% of patients. An inverse relationship between baseline SVI and change in SVI with afterload reduction was observed, suggesting that heightened sensitivity to afterload is a significant contributor to LF-LGSAS pathophysiology. These data highlight the utility of afterload reduction in the diagnostic assessment of LGSAS.