CBS 2019
CBSMD教育中心
English

血管内超声指导

科研文章

荐读文献

Combined use of OCT and IVUS in spontaneous coronary artery dissection 3-Year Outcomes of the ULTIMATE Trial Comparing Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation Defining a new standard for IVUS optimized drug eluting stent implantation: the PRAVIO study Positive remodeling at 3 year follow up is associated with plaque-free coronary wall segment at baseline: a serial IVUS study Comparison of paclitaxel-eluting stents (Taxus) and everolimus-eluting stents (Xience) in left main coronary artery disease with 3 years follow-up (from the ESTROFA-LM registry) Usefulness of minimum stent cross sectional area as a predictor of angiographic restenosis after primary percutaneous coronary intervention in acute myocardial infarction (from the HORIZONS-AMI Trial IVUS substudy) Usefulness of intravascular ultrasound to predict outcomes in short-length lesions treated with drug-eluting stents Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque Use of IVUS guided coronary stenting with drug eluting stent: a systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance

Original Research1990 May;81(5):1575-85

JOURNAL:Circulation. Article Link

Coronary artery imaging with intravascular high-frequency ultrasound

Potkin BN, Bartorelli AL, Gessert JM et al. Keywords: coronary artery imaging; intravascular high-frequency ultrasound

ABSTRACT


Safe and effective clinical application of new interventional therapies may require more precise imaging of atherosclerotic coronary arteries. To determine the reliability of catheter-based intravascular ultrasound as an imaging modality, a miniaturized prototype ultrasound system (1-mm transducer; center frequency, 25 MHz) was used to acquire two-dimensional, cross-sectional images in 21 human coronary arteries from 13 patients studied at necropsy who had moderate-to-severe atherosclerosis. Fifty-four atherosclerotic sites imagined by ultrasound were compared with formalin-fixed and fresh histological sections of the coronary arteries with a digital video planimetry system. Ultrasound and histological measurements correlated significantly (all p less than 0.0001) for coronary artery cross-sectional area (r = 0.94), residual lumen cross-sectional area (r = 0.85), percent cross-sectional area (r = 0.84), and linear wall thickness (plaque and media) measured at 0 degrees, 90 degrees, 180 degrees, and 270 degrees (r = 0.92). Moreover, ultrasound accurately predicted histological plaque composition in 96% of cases. Anatomic features of the coronary arteries that were easily discernible were the lumen-plaque and media-adventitia interfaces, very bright echoes casting acoustic shadows in calcified plaques, bright and homogeneous echoes in fibrous plaques, and relatively echo-lucent images in lipid-filled lesions. These data indicate that intravascular ultrasound provides accurate image characterization of the artery lumen and wall geometry as well as the presence, distribution, and histological type of atherosclerotic plaque. Thus, ultrasound imaging appears to have great potential application for enhanced diagnosis of coronary atherosclerosis and may serve to guide new catheter-based techniques in the treatment of coronary artery disease.