CBS 2019
CBSMD教育中心
English

Acute Coronary Syndrom

科研文章

荐读文献

Oxygen Therapy in Suspected Acute Myocardial Infarction Short Duration of DAPT Versus De-Escalation After Percutaneous Coronary Intervention for Acute Coronary Syndromes Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction Bare metal versus drug eluting stents for ST-segment elevation myocardial infarction in the TOTAL trial Door to Balloon Time: Is There a Point That Is Too Short? Successful catheter ablation of electrical storm after myocardial infarction Impact of door-to-balloon time on long-term mortality in high- and low-risk patients with ST-elevation myocardial infarction Percutaneous coronary intervention reduces mortality in myocardial infarction patients with comorbidities: Implications for elderly patients with diabetes or kidney disease Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection Association of Thrombus Aspiration With Time and Mortality Among Patients With ST-Segment Elevation Myocardial Infarction: A Post Hoc Analysis of the Randomized TOTAL Trial

Clinical Trial2009 May 21;360(21):2165-75.

JOURNAL:N Engl J Med. Article Link

Early versus delayed invasive intervention in acute coronary syndromes

Mehta SR, Granger CB, TIMACS Investigators. Keywords: Optimal timing; invasive coronary angiography; Non-ST-Segment Elevation Acute Coronary Syndrome

ABSTRACT


BACKGROUND - Earlier trials have shown that a routine invasive strategy improves outcomes in patients with acute coronary syndromes without ST-segment elevation. However, the optimal timing of such intervention remains uncertain.


METHODS - We randomly assigned 3031 patients with acute coronary syndromes to undergo either routine early intervention (coronary angiography < or = 24 hours after randomization) or delayed intervention (coronary angiography > or = 36 hours after randomization). The primary outcome was a composite of death, myocardial infarction, or stroke at 6 months. A prespecified secondary outcome was death, myocardial infarction, or refractory ischemia at 6 months.


RESULTS - Coronary angiography was performed in 97.6% of patients in the early-intervention group (median time, 14 hours) and in 95.7% of patients in the delayed-intervention group (median time, 50 hours). At 6 months, the primary outcome occurred in 9.6% of patients in the early-intervention group, as compared with 11.3% in the delayed-intervention group (hazard ratio in the early-intervention group, 0.85; 95% confidence interval [CI], 0.68 to 1.06; P=0.15). There was a relative reduction of 28% in the secondary outcome of death, myocardial infarction, or refractory ischemia in the early-intervention group (9.5%), as compared with the delayed-intervention group (12.9%) (hazard ratio, 0.72; 95% CI, 0.58 to 0.89; P=0.003). Prespecified analyses showed that early intervention improved the primary outcome in the third of patients who were at highest risk (hazard ratio, 0.65; 95% CI, 0.48 to 0.89) but not in the two thirds at low-to-intermediate risk (hazard ratio, 1.12; 95% CI, 0.81 to 1.56; P=0.01 for heterogeneity).


CONCLUSIONS - Early intervention did not differ greatly from delayed intervention in preventing the primary outcome, but it did reduce the rate of the composite secondary outcome of death, myocardial infarction, or refractory ischemia and was superior to delayed intervention in high-risk patients. (ClinicalTrials.gov number, NCT00552513.)

2009 Massachusetts Medical Society