CBS 2019
CBSMD教育中心
English

Acute Coronary Syndrom

科研文章

荐读文献

Prevalence and Prognosis of Unrecognized Myocardial Infarction Determined by Cardiac Magnetic Resonance in Older Adults Cardiovascular Risk and Statin Eligibility of Young Adults After an MI: Partners YOUNG-MI Registry Age-specific gender differences in early mortality following ST-segment elevation myocardial infarction in China 1-Year Outcomes of Patients Undergoing Primary Angioplasty for Myocardial Infarction Treated With Prasugrel Versus Ticagrelor The year in cardiovascular medicine 2020: acute coronary syndromes and intensive cardiac care Causes of delay and associated mortality in patients transferred with ST-segment-elevation myocardial infarction Complete Revascularization During Primary Percutaneous Coronary Intervention Reduces Death and Myocardial Infarction in Patients With Multivessel Disease-Meta-Analysis and Meta-Regression of Randomized Trials Canadian spontaneous coronary artery dissection cohort study: in-hospital and 30-day outcomes Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: a retrospective study Quality of Care in Chinese Hospitals: Processes and Outcomes After ST-segment Elevation Myocardial Infarction

Original ResearchJune 2019 DOI: 10.1016/j.jcmg.2019.02.028

JOURNAL:JACC: Cardiovascular Imaging Article Link

5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT

Y Otaki, J Betancur, T Sharir et al. Keywords: prognostic value; SPECT; visual MPI; stress total perfusion deficit; MACE

ABSTRACT

OBJECTIVES- This study compared the ability of automated myocardial perfusion imaging analysis to predict major adverse cardiac events (MACE) to that of visual analysis.

 

BACKGROUND- Quantitative analysis has not been compared with clinical visual analysis in prognostic studies.

 

METHODS- A total of 19,495 patients from the multicenter REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) study (64 ± 12 years of age, 56% males) undergoing stress Tc-99m-labeled single-photon emission computed tomography (SPECT) myocardial perfusion imaging were followed for 4.5 ± 1.7 years for MACE. Perfusion abnormalities were assessed visually and categorized as normal, probably normal, equivocal, or abnormal. Stress total perfusion deficit (TPD), quantified automatically, was categorized as TPD = 0%, TPD >0% to <1%, 1% to <3%, 3% to <5%, 5% to 10%, or TPD >10%. MACE consisted of death, nonfatal myocardial infarction, unstable angina, or late revascularization (>90 days). Kaplan-Meier and Cox proportional hazards analyses were performed to test the performance of visual and quantitative assessments in predicting MACE.

 

RESULTS - During follow-up examinations, 2,760 (14.2%) MACE occurred. MACE rates increased with worsening of visual assessments, that is, the rate for normal MACE was 2.0%, 3.2% for probably normal, 4.2% for equivocal, and 7.4% for abnormal (all p < 0.001). MACE rates increased with increasing stress TPD from 1.3% for the TPD category of 0% to 7.8% for the TPD category of >10% (p < 0.0001). The adjusted hazard ratio (HR) for MACE increased even in equivocal assessment (HR: 1.56; 95% confidence interval [CI]: 1.37 to 1.78) and in the TPD category of 3% to <5% (HR: 1.74; 95% CI: 1.41 to 2.14; all p < 0.001). The rate of MACE in patients visually assessed as normal still increased from 1.3% (TPD = 0%) to 3.4% (TPD 5%) (p < 0.0001).

 

CONCLUSIONS - Quantitative analysis allows precise granular risk stratification in comparison to visual reading, even for cases with normal clinical reading.