CBS 2019
CBSMD教育中心
English

Acute Coronary Syndrom

科研文章

荐读文献

Prevalence of Angina Among Primary Care Patients With Coronary Artery Disease Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest Short term outcome following acute phase switch among P2Y12 inhibitors in patients presenting with acute coronary syndrome treated with PCI: A systematic review and meta-analysis including 22,500 patients from 14 studies Clinical and Angiographic Features of Patients With Out-of-Hospital Cardiac Arrest and Acute Myocardial Infarction Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction Use of Mechanical Circulatory Support Devices Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock A randomised trial comparing two stent sizing strategies in coronary bifurcation treatment with bioresorbable vascular scaffolds - The Absorb Bifurcation Coronary (ABC) trial Culprit lesion location and outcome in patients with cardiogenic shock complicating myocardial infarction: a substudy of the IABP-SHOCK II-trial Association of Acute Procedural Results with Long-term Outcomes After CTO-PCI Coronary CT Angiography and 5-Year Risk of Myocardial Infarction

Original Research2015 Dec;90(12):1614-22.

JOURNAL:Mayo Clin Proc. Article Link

Aggressive Measures to Decrease "Door to Balloon" Time and Incidence of Unnecessary Cardiac Catheterization: Potential Risks and Role of Quality Improvement

Fanari Z, Abraham N, Kolm P et al. Keywords: Door to Balloon Time; Incidence of Unnecessary Cardiac Catheterization; Quality Improvement

ABSTRACT


OBJECTIVE - To assess the impact of an aggressive protocol to decrease the time from hospital arrival to onset of reperfusion therapy ("door to balloon [DTB] time") on the incidence of false-positive (FP) diagnosis of ST-segment elevation myocardial infarction (STEMI) and in-hospital mortality.


PATIENTS AND METHODS - The study population included 1031 consecutive patients with presumed STEMI and confirmed ST-segment elevation who underwent emergent catheterization between July 1, 2008, and December 1, 2012, On July 1, 2009, we instituted an aggressive protocol to reduce DTB time. A quality improvement (QI) initiative was introduced on January 1, 2011, to maintain short DTB while improving outcomes. Outcomes were compared before and after the initiation of the DTB time protocol and similarly before and after the QI initiative. Outcomes were DTB time, the incidence of FP-STEMI, and in-hospital mortality. A review of the emergency catheterization database for the 10-year period from January 1, 2001, through December 31, 2010, was performed for historical comparison.


RESULTS - Of the 1031 consecutive patients with presumed STEMI who were assessed, 170 were considered to have FP-STEMI. The median DTB time decreased significantly from 76 to 61 minutes with the aggressive DTB time protocol (P=.001), accompanied by an increase of FP-STEMI (7.7% vs 16.5%; P=.02). Although a nonsignificant reduction of in-hospital mortality occurred in patients with true-positive STEMI (P=.60), a significant increase in in-hospital mortality was seen in patients with FP-STEMI (P=.03). After the QI initiative, a shorter DTB time (59 minutes) was maintained while decreasing FP-STEMI in-hospital mortality.


CONCLUSION - Aggressive measures to reduce DTB time were associated with an increased incidence of FP-STEMI and FP-STEMI in-hospital mortality. Efforts to reduce DTB time should be monitored systematically to avoid unnecessary procedures that may delay other appropriate therapies in critically ill patients.


Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.