CBS 2019
CBSMD教育中心
English

Acute Coronary Syndrom

科研文章

荐读文献

Coronary CT Angiography and 5-Year Risk of Myocardial Infarction Ticagrelor versus Clopidogrel in Patients with STEMI Treated with Fibrinolytic Therapy: TREAT Trial Prevalence of Angina Among Primary Care Patients With Coronary Artery Disease The Wait for High-Sensitivity Troponin Is Over—Proceed Cautiously Use of Mechanical Circulatory Support Devices Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction Incidence, predictors, and outcomes of DAPT disruption due to non-compliance vs. bleeding after PCI: insights from the PARIS Registry Early versus delayed invasive intervention in acute coronary syndromes Application of High-Sensitivity Troponin in Suspected Myocardial Infarction Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction

Clinical Trial2021 Aug 1;152:34-42.

JOURNAL:Am J Cardiol. Article Link

Effect of Lipoprotein (a) Levels on Long-term Cardiovascular Outcomes in Patients with Myocardial Infarction with Nonobstructive Coronary Arteries

SD Gao, WJ Ma, MY Yu Keywords: Lp(a); MINOCA; STEMI; prognostic value; MACE

ABSTRACT

The association between elevated lipoprotein(a) [Lp(a)] and poor outcomes in coronary artery disease (CAD) has been addressed for decades. However, little is known about the prognostic value of Lp(a) in patients with myocardial infarction with nonobstructive coronary arteries (MINOCA). A total of 1179 patients with MINOCA were enrolled and divided into low, medium, and high Lp(a) groups based on the cut-off value of 10 and 30mg/dL. The primary endpoint was major adverse cardiovascular events (MACE), a composite of all-cause death, nonfatal MI, nonfatal stroke, revascularization, and hospitalization for unstable angina or heart failure. Kaplan-Meier and Cox regression analyses were performed. Accuracy was defined as area under the curve (AUC) using a receiver-operating characteristic analysis. Patients with higher Lp(a) levels had a significantly higher incidence of MACE (9.5%, 14.6%, 18.5%; p = 0.002) during the median follow-up of 41.7 months. The risk of MACE also increased with the rising Lp(a) levels even after multivariate adjustment [low Lp(a) group as reference, medium group: hazard ratio (HR) 1.55, 95% confidence interval (CI): 1.02-2.40, p = 0.047; high group: HR 2.07, 95% CI: 1.32-3.25, p = 0.001]. Further, clinically elevated Lp(a) defined as Lp(a) ≥30 mg/dL was closely associated with an increased risk of MACE in overall and in subgroups (all p <0.05). When adding Lp(a) (AUC 0.61) into the Thrombolysis in Myocardial Infarction (TIMI) score (AUC 0.68), the combined model (AUC 0.73) yielded a significant improvement in discrimination for MACE (ΔAUC 0.05, p = 0.032). In conclusion, elevated Lp(a) was strongly associated with a poor prognosis in patients with MINOCA. Adding Lp(a) to traditional risk score further improved risk prediction. Our data, for the first time, confirmed the Lp(a) as a residual risk factor for MINOCA.