CBS 2019
CBSMD教育中心
English

Acute Coronary Syndrom

科研文章

荐读文献

1-Year Outcomes of Delayed Versus Immediate Intervention in Patients With Transient ST-Segment Elevation Myocardial Infarction Effect of improved door-to-balloon time on clinical outcomes in patients with ST segment elevation myocardial infarction Frequency of nonsystem delays in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention and implications for door-to-balloon time reporting (from the American Heart Association Mission: Lifeline program) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) Non-eligibility for reperfusion therapy in patients presenting with ST-segment elevation myocardial infarction: Contemporary insights from the National Cardiovascular Data Registry (NCDR) Colchicine Inhibits Neutrophil Extracellular Trap Formation in Patients With Acute Coronary Syndrome After Percutaneous Coronary Intervention Changes in One-Year Mortality in Elderly Patients Admitted with Acute Myocardial Infarction in Relation with Early Management Prevalence of Coronary Vasospasm Using Coronary Reactivity Testing in Patients With Spontaneous Coronary Artery Dissection Prognostic Value of the Residual SYNTAX Score After Functionally Complete Revascularization in ACS Decade-Long Trends (2001 to 2011) in the Use of Evidence-Based Medical Therapies at the Time of Hospital Discharge for Patients Surviving Acute Myocardial Infarction

Original Research2018 Jan 25;378(4):345-353.

JOURNAL:N Engl J Med. Article Link

Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection

Kwong JC, Schwartz KL, Campitelli MA et al. Keywords: respiratory infections; influenza; acute myocardial infarction

ABSTRACT


BACKGROUND - Acute myocardial infarction can be triggered by acute respiratory infections. Previous studies have suggested an association between influenza and acute myocardial infarction, but those studies used nonspecific measures of influenza infection or study designs that were susceptible to bias. We evaluated the association between laboratory-confirmed influenza infection and acute myocardial infarction.


METHODS - We used the self-controlled case-series design to evaluate the association between laboratory-confirmed influenza infection and hospitalization for acute myocardial infarction. We used various high-specificity laboratory methods to confirm influenza infection in respiratory specimens, and we ascertained hospitalization for acute myocardial infarction from administrative data. We defined the "risk interval" as the first 7 days afterrespiratory specimen collection and the "control interval" as 1 year before and 1 year after the risk interval.


RESULTS - We identified 364 hospitalizations for acute myocardial infarction that occurred within 1 year before and 1 year after a positive test result for influenza. Of these, 20 (20.0 admissions per week) occurred during the risk interval and 344 (3.3 admissions per week) occurred during the control interval. The incidence ratio of an admission for acute myocardial infarction during the risk interval as compared with the control interval was 6.05 (95% confidence interval [CI], 3.86 to 9.50). No increased incidence was observed after day 7. Incidence ratios for acute myocardial infarction within 7 days after detection of influenza B, influenza A, respiratory syncytial virus, and other viruses were 10.11 (95% CI, 4.37 to 23.38), 5.17 (95% CI, 3.02 to 8.84), 3.51 (95% CI, 1.11 to 11.12), and 2.77 (95% CI, 1.23 to 6.24), respectively.


CONCLUSIONS - We found a significant association between respiratory infections, especially influenza, and acute myocardial infarction. (Funded by the Canadian Institutes of Health Research and others.)