CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis Decade-Long Trends (2001 to 2011) in the Use of Evidence-Based Medical Therapies at the Time of Hospital Discharge for Patients Surviving Acute Myocardial Remote ischaemic conditioning and healthcare system delay in patients with ST-segment elevation myocardial infarction Analysis of reperfusion time trends in patients with ST-elevation myocardial infarction across New York State from 2004 to 2012 Effect of Plaque Burden and Morphology on Myocardial Blood Flow and Fractional Flow Reserve Prognostic significance of QRS fragmentation and correlation with infarct size in patients with anterior ST-segment elevation myocardial infarction treated with percutaneous coronary intervention: Insights from the INFUSE-AMI trial Door-to-balloon time and mortality among patients undergoing primary PCI Trends in early aspirin use among patients with acute myocardial infarction in China, 2001-2011: the China PEACE-Retrospective AMI study The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE) Prospective Study of Percutaneous Coronary Intervention: Study Design Non-eligibility for reperfusion therapy in patients presenting with ST-segment elevation myocardial infarction: Contemporary insights from the National Cardiovascular Data Registry (NCDR)

Clinical Trial2017 Oct 17;136(16):1495-1508.

JOURNAL:Circulation. Article Link

Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction

Kaier TE, Twerenbold R, Marber M et al. Keywords: cMyC; cardiac myosin-binding protein C; myocardial infarction, APACE; troponin I; troponin T

ABSTRACT


BACKGROUNDCardiac myosin-binding protein C (cMyC) is a cardiac-restricted protein that is more abundant than cardiac troponins (cTn) and is released more rapidly after acute myocardial infarction (AMI). We evaluated cMyC as an adjunct or alternative to cTn in the early diagnosis of AMI.


METHODSUnselected patients (N=1954) presenting to the emergency department with symptoms suggestive of AMI, concentrations of cMyC, and high-sensitivity (hs) and standard-sensitivity cTn were measured at presentation. The final diagnosis of AMI was independently adjudicated using all available clinical and biochemical information without knowledge of cMyC. The prognostic end point was long-term mortality.

RESULTSFinal diagnosis was AMI in 340 patients (17%). Concentrations of cMyC at presentation were significantly higher in those with versus without AMI (median, 237 ng/L versus 13 ng/L, P<0.001). Discriminatory power for AMI, as quantified by the area under the receiver-operating characteristic curve (AUC), was comparable for cMyC (AUC, 0.924), hs-cTnT (AUC, 0.927), and hs-cTnI (AUC, 0.922) and superior to cTnI measured by a contemporary sensitivity assay (AUC, 0.909). The combination of cMyC with hs-cTnT or standard-sensitivity cTnI (but not hs-cTnI) led to an increase in AUC to 0.931 (P<0.0001) and 0.926 (P=0.003), respectively. Use of cMyC more accurately classified patients with a single blood test into rule-out or rule-in categories: Net Reclassification Improvement +0.149 versus hs-cTnT, +0.235 versus hs-cTnI (P<0.001). In early presenters (chest pain <3 h), the improvement in rule-in/rule-out classification with cMyC was larger compared with hs-cTnT (Net Reclassification Improvement +0.256) and hs-cTnI (Net Reclassification Improvement +0.308; both P<0.001). Comparing the C statistics, cMyC was superior to hs-cTnI and standard sensitivity cTnI (P<0.05 for both) and similar to hs-cTnT at predicting death at 3 years.

CONCLUSIONScMyC at presentation provides discriminatory power comparable to hs-cTnT and hs-cTnI in the diagnosis of AMI and may perform favorably in patients presenting early after symptom onset.

CLINICAL TRIAL REGISTRATIONURL: https://www.clinicaltrials.gov. Unique identifier: NCT00470587.

© 2017 The Authors.