CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Triage Considerations for Patients Referred for Structural Heart Disease Intervention During the Coronavirus Disease 2019 (COVID-19) Pandemic: An ACC /SCAI Consensus Statement Early versus delayed invasive intervention in acute coronary syndromes Evaluation and Management of Nonculprit Lesions in STEMI Effect of Smoking on Outcomes of Primary PCI in Patients With STEMI Post-Discharge Bleeding and Mortality Following Acute Coronary Syndromes With or Without PCI New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation: Controversy, Fallacy, and Progress Effect of Pre-Hospital Crushed Prasugrel Tablets in Patients with STEMI Planned for Primary Percutaneous Coronary Intervention: The Randomized COMPARE CRUSH Trial Comparison in prevalence, predictors, and clinical outcome of VSR versus FWR after acute myocardial infarction: The prospective, multicenter registry MOODY trial-heart rupture analysis Imaging Coronary Anatomy and Reducing Myocardial Infarction

Clinical Trial2009 May 21;360(21):2165-75.

JOURNAL:N Engl J Med. Article Link

Early versus delayed invasive intervention in acute coronary syndromes

Mehta SR, Granger CB, TIMACS Investigators. Keywords: Optimal timing; invasive coronary angiography; Non-ST-Segment Elevation Acute Coronary Syndrome

ABSTRACT


BACKGROUND - Earlier trials have shown that a routine invasive strategy improves outcomes in patients with acute coronary syndromes without ST-segment elevation. However, the optimal timing of such intervention remains uncertain.


METHODS - We randomly assigned 3031 patients with acute coronary syndromes to undergo either routine early intervention (coronary angiography < or = 24 hours after randomization) or delayed intervention (coronary angiography > or = 36 hours after randomization). The primary outcome was a composite of death, myocardial infarction, or stroke at 6 months. A prespecified secondary outcome was death, myocardial infarction, or refractory ischemia at 6 months.


RESULTS - Coronary angiography was performed in 97.6% of patients in the early-intervention group (median time, 14 hours) and in 95.7% of patients in the delayed-intervention group (median time, 50 hours). At 6 months, the primary outcome occurred in 9.6% of patients in the early-intervention group, as compared with 11.3% in the delayed-intervention group (hazard ratio in the early-intervention group, 0.85; 95% confidence interval [CI], 0.68 to 1.06; P=0.15). There was a relative reduction of 28% in the secondary outcome of death, myocardial infarction, or refractory ischemia in the early-intervention group (9.5%), as compared with the delayed-intervention group (12.9%) (hazard ratio, 0.72; 95% CI, 0.58 to 0.89; P=0.003). Prespecified analyses showed that early intervention improved the primary outcome in the third of patients who were at highest risk (hazard ratio, 0.65; 95% CI, 0.48 to 0.89) but not in the two thirds at low-to-intermediate risk (hazard ratio, 1.12; 95% CI, 0.81 to 1.56; P=0.01 for heterogeneity).


CONCLUSIONS - Early intervention did not differ greatly from delayed intervention in preventing the primary outcome, but it did reduce the rate of the composite secondary outcome of death, myocardial infarction, or refractory ischemia and was superior to delayed intervention in high-risk patients. (ClinicalTrials.gov number, NCT00552513.)

2009 Massachusetts Medical Society