CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

A systematic review of factors predicting door to balloon time in ST-segment elevation myocardial infarction treated with percutaneous intervention Correlation and prognostic role of neutrophil to lymphocyte ratio and SYNTAX score in patients with acute myocardial infarction treated with percutaneous coronary intervention: A six-year experience Pharmacoinvasive and Primary Percutaneous Coronary Intervention Strategies in ST-Elevation Myocardial Infarction (from the Mayo Clinic STEMI Network) Oxygen Therapy in Suspected Acute Myocardial Infarction Symptom onset-to-balloon time and mortality in the first seven years after STEMI treated with primary percutaneous coronary intervention Aggressive Measures to Decrease Causes of delay and associated mortality in patients transferred with ST-segment-elevation myocardial infarction Nonsystem reasons for delay in door-to-balloon time and associated in-hospital mortality: a report from the National Cardiovascular Data Registry High-Sensitivity Troponins and Outcomes After Myocardial Infarction China PEACE risk estimation tool for in-hospital death from acute myocardial infarction: an early risk classification tree for decisions about fibrinolytic therapy

Clinical Trial2009 May 21;360(21):2165-75.

JOURNAL:N Engl J Med. Article Link

Early versus delayed invasive intervention in acute coronary syndromes

Mehta SR, Granger CB, TIMACS Investigators. Keywords: Optimal timing; invasive coronary angiography; Non-ST-Segment Elevation Acute Coronary Syndrome

ABSTRACT


BACKGROUND - Earlier trials have shown that a routine invasive strategy improves outcomes in patients with acute coronary syndromes without ST-segment elevation. However, the optimal timing of such intervention remains uncertain.


METHODS - We randomly assigned 3031 patients with acute coronary syndromes to undergo either routine early intervention (coronary angiography < or = 24 hours after randomization) or delayed intervention (coronary angiography > or = 36 hours after randomization). The primary outcome was a composite of death, myocardial infarction, or stroke at 6 months. A prespecified secondary outcome was death, myocardial infarction, or refractory ischemia at 6 months.


RESULTS - Coronary angiography was performed in 97.6% of patients in the early-intervention group (median time, 14 hours) and in 95.7% of patients in the delayed-intervention group (median time, 50 hours). At 6 months, the primary outcome occurred in 9.6% of patients in the early-intervention group, as compared with 11.3% in the delayed-intervention group (hazard ratio in the early-intervention group, 0.85; 95% confidence interval [CI], 0.68 to 1.06; P=0.15). There was a relative reduction of 28% in the secondary outcome of death, myocardial infarction, or refractory ischemia in the early-intervention group (9.5%), as compared with the delayed-intervention group (12.9%) (hazard ratio, 0.72; 95% CI, 0.58 to 0.89; P=0.003). Prespecified analyses showed that early intervention improved the primary outcome in the third of patients who were at highest risk (hazard ratio, 0.65; 95% CI, 0.48 to 0.89) but not in the two thirds at low-to-intermediate risk (hazard ratio, 1.12; 95% CI, 0.81 to 1.56; P=0.01 for heterogeneity).


CONCLUSIONS - Early intervention did not differ greatly from delayed intervention in preventing the primary outcome, but it did reduce the rate of the composite secondary outcome of death, myocardial infarction, or refractory ischemia and was superior to delayed intervention in high-risk patients. (ClinicalTrials.gov number, NCT00552513.)

2009 Massachusetts Medical Society