CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

The prognostic role of mid-range ejection fraction in ST-segment elevation myocardial infarction Frequency of nonsystem delays in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention and implications for door-to-balloon time reporting (from the American Heart Association Mission: Lifeline program) Short Duration of DAPT Versus De-Escalation After Percutaneous Coronary Intervention for Acute Coronary Syndromes Changes in One-Year Mortality in Elderly Patients Admitted with Acute Myocardial Infarction in Relation with Early Management Canadian spontaneous coronary artery dissection cohort study: in-hospital and 30-day outcomes Diagnosis and Prognosis of Coronary Artery Disease with SPECT and PET 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) Canadian SCAD Cohort Study: Shedding Light on SCAD From a United Front Heart rate, pulse pressure and mortality in patients with myocardial infarction complicated by heart failure Association of Parenteral Anticoagulation Therapy With Outcomes in Chinese Patients Undergoing Percutaneous Coronary Intervention for Non-ST-Segment Elevation Acute Coronary Syndrome

Original Research2019 Mar;35(3):401-407.

JOURNAL:Int J Cardiovasc Imaging. Article Link

Impact of tissue protrusion after coronary stenting in patients with ST-segment elevation myocardial infarction

Okuya Y, Saito Y, Sakai Y et al. Keywords: ntravascular ultrasound; Prognosis; ST-segment elevation myocardial infarction; Tissue protrusion

ABSTRACT


Clinical impact of tissue protrusion (TP) after coronary stenting is still controversial, especially in patients with ST-segment elevation myocardial infarction (STEMI). A total of 104 STEMI patients without previous MI who underwent primary percutaneous coronary intervention (PCI) under intravascular ultrasound (IVUS)-guidance were included. Post-stenting grayscale IVUS analysis was performed, and the patients were classified according to the presence or absence of post-stenting TP on IVUS. Coronary angiography and single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) with 99mTc tetrofosmin were analyzed. Major adverse cardiac events were defined as cardiovascular death, myocardial infarction, heart failure hospitalization, and target vessel revascularization. TP on IVUS was detected in 62 patients (60%). Post-PCI coronaryflow was more impaired, and peak creatine kinase-myoglobin binding level was higher in patients with TP compared to those without. SPECT MPI was performed in 77 out of 104 patients (74%) at 35.4 ± 7.7 days after primary PCI. In patients with TP, left ventricular ejection fraction was significantly reduced (47.5 ± 12.0% vs. 57.6 ± 11.2%, p < 0.001), and infarct size was larger [17% (8-25) vs. 4% (0-14), p = 0.002] on SPECT MPI. During a median follow-up of 14 months after primary PCI, Kaplan-Meier analysis demonstrated a significantly higher incidence of major adverse cardiac events in patients with TP compared to those without. TP on IVUS after coronary stenting was associated with poor outcomes in patients with STEMI.