CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Intravenous Statin Administration During Myocardial Infarction Compared With Oral Post-Infarct Administration Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI) Coronary Angiography in Patients With Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation: A Systematic Review and Meta-Analysis The year in cardiovascular medicine 2020: acute coronary syndromes and intensive cardiac care Comparison of the Preventive Efficacy of Rosuvastatin Versus Atorvastatin in Post-Contrast Acute Kidney Injury in Patients With ST-segment Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction Impact of tissue protrusion after coronary stenting in patients with ST-segment elevation myocardial infarction Impact of Chronic Total Coronary Occlusion Location on Long-term Survival After Percutaneous Coronary Intervention A Novel Circulating MicroRNA for the Detection of Acute Myocarditis Association of Silent Myocardial Infarction and Sudden Cardiac Death

Original ResearchJuly 10, 2019

JOURNAL:JAMA Cardiol. Article Link

Association of Silent Myocardial Infarction and Sudden Cardiac Death

Vähätalo JH, Huikuri HV, Holmström LTA et al. Keywords: myocardial infarction history; undiagnosed or silent myocardial infarction scars; sudden cardiac death;

ABSTRACT


IMPORTANCE - Myocardial infarction in the absence of major or unrecognized symptoms are characterized as silent (SMI). The prevalence of SMI among individuals who experience sudden cardiac death (SCD), with or without concomitant electrocardiographic (ECG) changes, has not previously been described in detail from large studies to our knowledge.

 

OBJECTIVE - To determine the prevalence of SMI in individuals who experience SCD without a prior diagnosis of coronary artery disease (CAD) and to detect ECG abnormalities associated with SMI-associated SCD.

 

DESIGN, SETTING, AND PARTICIPANTS - This case-control study compared autopsy findings, clinical characteristics, and ECG markers associated with SMI in a consecutive cohort of individuals in the Finnish Genetic Study of Arrhythmic Events (Fingesture) study population who were verified to have had SCD. The Fingesture study consists of individuals who had autopsy-verified SCD in Northern Finland between 1998 and 2017. Individuals who had SCD with CAD and evidence of SMI were regarded as having had cases; those who had SCD with CAD without SMI were considered control participants. Analyses of ECG tests were carried out by investigators blinded to the SMI data. Data analysis was completed from October 2018 through November 2018.

 

MAIN OUTCOMES AND MEASURES - Silent MI was defined as a scar detected by macroscopic and microscopic evaluation of myocardium without previously diagnosed CAD. Clinical history was obtained from medical records, previously recorded ECGs, and a standardized questionnaire provided to the next of kin. The hypothesis tested was that SMI would be prevalent in the population who had had SCD with CAD, and it might be detected or suspected from findings on ECGs prior to death in many individuals.

 

RESULTS - A total of 5869 individuals were included (2459 males [78.8%]; mean [SD] age, 64.9 [12.4] years). The cause of SCD was CAD in 4392 individuals (74.8%), among whom 3122 had no history of previously diagnosed CAD. Two individuals were excluded owing to incomplete autopsy information. An ECG recorded prior to SCD was available in 438 individuals. Silent MI was detected in 1322 individuals (42.4%) who experienced SCD without a clinical history of CAD. The participants with SMI were older than participants without MI scarring (mean [SD] age, 66.9 [11.1] years; 65.5 [11.6] years; P < .001) and were more often men (1102 of 1322 [83.4%] vs 1357 of 1798 [75.5%]; P < .001). Heart weight was higher in participants with SMI (mean [SD] weight, 483 [109] g vs 438 [106] g; P < .001). In participants with SMI, SCD occurred more often during physical activity (241 of 1322 [18.2%] vs 223 of 1798 [12.4%]; P < .001). A prior ECG was abnormal in 125 of the 187 individuals (66.8%) who had SCD after SMI compared with 139 of 251 (55.4%) of those who had SCD without SMI (P = .02).

 

CONCLUSIONS AND RELEVANCE - Many individuals who experienced SCD associated with CAD had a previously undetected MI at autopsy. Previous SMI was associated with myocardial hypertrophy and SCD during physical activity. Premortem ECGs in a subset with available data were abnormal in 67% of the individuals who had had a SCD after an SMI.