CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Nonculprit Stenosis Evaluation Using Instantaneous Wave-Free Ratio in Patients With ST-Segment Elevation Myocardial Infarction Wearable Cardioverter-Defibrillator after Myocardial Infarction Bare metal versus drug eluting stents for ST-segment elevation myocardial infarction in the TOTAL trial Location of the culprit coronary lesion and its association with delay in door-to-balloon time (from a multicenter registry of primary percutaneous coronary intervention) Remote ischaemic conditioning and healthcare system delay in patients with ST-segment elevation myocardial infarction Door to Balloon Time: Is There a Point That Is Too Short? Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis Percutaneous coronary intervention reduces mortality in myocardial infarction patients with comorbidities: Implications for elderly patients with diabetes or kidney disease Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: a retrospective study

Original Researcholume 74, Issue 25, December 2019

JOURNAL:J Am Coll Cardiol. Article Link

Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction

N Haider, L Boscá, HR Zandbergen et al. Keywords: cardiac fibroblast; fibroblast markers; infiltration; macrophage/fibroblast-like transition; myeloid tracers; MI

ABSTRACT


BACKGROUND - Macrophages and fibroblasts are 2 major cell types involved in healing after myocardial infarction (MI), contributing to myocardial remodeling and fibrosis. Post-MI fibrosis progression is characterized by a decrease in cardiac macrophage content.


OBJECTIVES - This study explores the potential of macrophages to express fibroblast genes and the direct role of these cells in post-MI cardiac fibrosis.


METHODS - Prolonged in vitro culture of human macrophages was used to evaluate the capacity to express fibroblast markers. Infiltrating cardiac macrophages was tracked in vivo after experimental MI of LysM(Cre/+);ROSA26(EYFP/+) transgenic mice. The expression of Yellow Fluorescent Protein (YFP) in these animals is restricted to myeloid lineage allowing the identification of macrophage-derived fibroblasts. The expression in YFP-positive cells of fibroblast markers was determined in myocardial tissue sections of hearts from these mice after MI.


RESULTS - Expression of the fibroblast markers type I collagen, prolyl-4-hydroxylase, fibroblast specific protein-1, and fibroblast activation protein was evidenced in YFP-positive cells in the heart after MI. The presence of fibroblasts after MI was evaluated in the hearts of animals after depletion of macrophages with clodronate liposomes. This macrophage depletion significantly reduced the number of Mac3+Col1A1+ cells in the heart after MI.


CONCLUSIONS -  The data provide both in vitro and in vivo evidence for the ability of macrophages to transition and adopt a fibroblast-like phenotype. Therapeutic manipulation of this macrophage-fibroblast transition may hold promise for favorably modulating the fibrotic response after MI and after other cardiovascular pathological processes.