CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Triage Considerations for Patients Referred for Structural Heart Disease Intervention During the Coronavirus Disease 2019 (COVID-19) Pandemic: An ACC /SCAI Consensus Statement Early versus delayed invasive intervention in acute coronary syndromes Decreased inspired oxygen stimulates de novo formation of coronary collaterals in adult heart Effect of Pre-Hospital Crushed Prasugrel Tablets in Patients with STEMI Planned for Primary Percutaneous Coronary Intervention: The Randomized COMPARE CRUSH Trial Effect of Smoking on Outcomes of Primary PCI in Patients With STEMI Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation: Controversy, Fallacy, and Progress New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial Post-Discharge Bleeding and Mortality Following Acute Coronary Syndromes With or Without PCI Comparison in prevalence, predictors, and clinical outcome of VSR versus FWR after acute myocardial infarction: The prospective, multicenter registry MOODY trial-heart rupture analysis Coronary CT Angiography and 5-Year Risk of Myocardial Infarction

Original ResearchVolume 75, Issue 12, March 2020

JOURNAL:J Am Coll Cardiol. Article Link

Intravenous Statin Administration During Myocardial Infarction Compared With Oral Post-Infarct Administration

G Mendieta, S Ben-Aicha, M Gutiérrez et al. Keywords: cardioprotection; MI; pigs; statin; timing

ABSTRACT


BACKGROUND - Beyond lipid-lowering, statins exert cardioprotective effects. High-dose statin treatment seems to reduce cardiovascular complications in high-risk patients. The ideal timing and administration regime remain unknown.

 

OBJECTIVES - This study compared the cardioprotective effects of intravenous statin administration during myocardial infarction (MI) with oral administration immediately post-MI.

 

METHODS - Hypercholesterolemic pigs underwent MI induction (90 min of ischemia) and were kept for 42 days. Animals were distributed in 3 arms (A): A1 received an intravenous bolus of atorvastatin during MI; A2 received an intravenous bolus of vehicle during MI; and A3 received oral atorvastatin within 2 h post-MI. A1 and A3 remained on daily oral atorvastatin for the following 42 days. Cardiac magnetic resonance analysis (days 3 and 42 post-MI) and molecular/histological studies were performed.

 

RESULTS - At day 3, A1 showed a 10% reduction in infarct size compared with A3 and A2 and a 50% increase in myocardial salvage. At day 42, both A1 and A3 showed a significant decrease in scar size versus A2; however, A1 showed a further 24% reduction versus A3. Functional analyses revealed improved systolic performance in A1 compared with A2 and less wall motion abnormalities in the jeopardized myocardium versus both groups at day 42. A1 showed enhanced collagen content and AMP-activated protein kinase activation in the scar, increased vessel density in the penumbra, higher tumor necrosis factor α plasma levels and lower peripheral blood mononuclear cell activation versus both groups.

 

CONCLUSIONS - Intravenous administration of atorvastatin during MI limits cardiac damage, improves cardiac function, and mitigates remodeling to a larger extent than when administered orally shortly after reperfusion. This therapeutic approach deserves to be investigated in ST-segment elevation MI patients.