CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Acute Myocardial Injury in Patients Hospitalized With COVID-19 Infection: A Review Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients With STEMI: The EXPLORE Trial Comparative Effectiveness of β-Blocker Use Beyond 3 Years After Myocardial Infarction and Long-Term Outcomes Among Elderly Patients No causal effects of plasma homocysteine levels on the risk of coronary heart disease or acute myocardial infarction: A Mendelian randomization study Refractory Angina: From Pathophysiology to New Therapeutic Nonpharmacological Technologies Incidence, predictors, and outcomes of DAPT disruption due to non-compliance vs. bleeding after PCI: insights from the PARIS Registry Intensive Care Utilization in Stable Patients With ST-Segment Elevation Myocardial Infarction Treated With Rapid Reperfusion Acute Noncardiac Organ Failure in Acute Myocardial Infarction With Cardiogenic Shock Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study Invasive Management of Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Scientific Statement From the American Heart Association

Original ResearchVolume 75, Issue 12, March 2020

JOURNAL:J Am Coll Cardiol. Article Link

Intravenous Statin Administration During Myocardial Infarction Compared With Oral Post-Infarct Administration

G Mendieta, S Ben-Aicha, M Gutiérrez et al. Keywords: cardioprotection; MI; pigs; statin; timing

ABSTRACT


BACKGROUND - Beyond lipid-lowering, statins exert cardioprotective effects. High-dose statin treatment seems to reduce cardiovascular complications in high-risk patients. The ideal timing and administration regime remain unknown.

 

OBJECTIVES - This study compared the cardioprotective effects of intravenous statin administration during myocardial infarction (MI) with oral administration immediately post-MI.

 

METHODS - Hypercholesterolemic pigs underwent MI induction (90 min of ischemia) and were kept for 42 days. Animals were distributed in 3 arms (A): A1 received an intravenous bolus of atorvastatin during MI; A2 received an intravenous bolus of vehicle during MI; and A3 received oral atorvastatin within 2 h post-MI. A1 and A3 remained on daily oral atorvastatin for the following 42 days. Cardiac magnetic resonance analysis (days 3 and 42 post-MI) and molecular/histological studies were performed.

 

RESULTS - At day 3, A1 showed a 10% reduction in infarct size compared with A3 and A2 and a 50% increase in myocardial salvage. At day 42, both A1 and A3 showed a significant decrease in scar size versus A2; however, A1 showed a further 24% reduction versus A3. Functional analyses revealed improved systolic performance in A1 compared with A2 and less wall motion abnormalities in the jeopardized myocardium versus both groups at day 42. A1 showed enhanced collagen content and AMP-activated protein kinase activation in the scar, increased vessel density in the penumbra, higher tumor necrosis factor α plasma levels and lower peripheral blood mononuclear cell activation versus both groups.

 

CONCLUSIONS - Intravenous administration of atorvastatin during MI limits cardiac damage, improves cardiac function, and mitigates remodeling to a larger extent than when administered orally shortly after reperfusion. This therapeutic approach deserves to be investigated in ST-segment elevation MI patients.