CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial Advances in Clinical Cardiology 2020: A Summary of Key Clinical Trials High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes Nonculprit Lesion Myocardial Infarction Following Percutaneous Coronary Intervention in Patients With Acute Coronary Syndrome Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome–Causing Culprit Lesions Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative Relationship between therapeutic effects on infarct size in acute myocardial infarction and therapeutic effects on 1-year outcomes: A patient-level analysis of randomized clinical trials Restenosis, Stent Thrombosis, and Bleeding Complications - Navigating Between Scylla and Charybdis Late Survival Benefit of Percutaneous Coronary Intervention Compared With Medical Therapy in Patients With Coronary Chronic Total Occlusion: A 10-Year Follow-Up Study

Clinical Trial2020 Aug 18;76(7):812-824.

JOURNAL:J Am Coll Cardiol. Article Link

Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest

K Ameloot, P Jakkula, J Hästbacka et al. Keywords: acute myocardial infarction; cardiac arrest; cardiogenic shock

ABSTRACT

BACKGROUND - In patients with shock after acute myocardial infarction (AMI), the optimal level of pharmacologic support is unknown. Whereas higher doses may increase myocardial oxygen consumption and induce arrhythmias, diastolic hypotension may reduce coronary perfusion and increase infarct size.

 

OBJECTIVES - This study aimed to determine the optimal mean arterial pressure (MAP) in patients with AMI and shock after cardiac arrest.

 

METHODS - This study used patient-level pooled analysis of post-cardiac arrest patients with shock after AMI randomized in the Neuroprotect (Neuroprotective Goal Directed Hemodynamic Optimization in Post-cardiac Arrest Patients; NCT02541591) and COMACARE (Carbon Dioxide, Oxygen and Mean Arterial Pressure After Cardiac Arrest and Resuscitation; NCT02698917) trials who were randomized to MAP 65 mm Hg or MAP 80/85 to 100 mm Hg targets during the first 36 h after admission. The primary endpoint was the area under the 72-h high-sensitivity troponin-T curve.

 

RESULTS - Of 235 patients originally randomized, 120 patients had AMI with shock. Patients assigned to the higher MAP target (n = 58) received higher doses of norepinephrine (p = 0.004) and dobutamine (p = 0.01) and reached higher MAPs (86 ± 9 mm Hg vs. 72 ± 10 mm Hg, p < 0.001). Whereas admission hemodynamics and angiographic findings were all well-balanced and revascularization was performed equally effective, the area under the 72-h high-sensitivity troponin-T curve was lower in patients assigned to the higher MAP target (median: 1.14 μg.72 h/l [interquartile range: 0.35 to 2.31 μg.72 h/l] vs. median: 1.56 μg.72 h/l [interquartile range: 0.61 to 4.72 μg. 72 h/l]; p = 0.04). Additional pharmacologic support did not increase the risk of a new cardiac arrest (p = 0.88) or atrial fibrillation (p = 0.94). Survival with good neurologic outcome at 180 days was not different between both groups (64% vs. 53%, odds ratio: 1.55; 95% confidence interval: 0.74 to 3.22).

 

CONCLUSIONS - In post-cardiac arrest patients with shock after AMI, targeting MAP between 80/85 and 100 mm Hg with additional use of inotropes and vasopressors was associated with smaller myocardial injury.