CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Cardiac Troponin Composition Characterization after Non ST-Elevation Myocardial Infarction: Relation with Culprit Artery, Ischemic Time Window, and Severity of Injury Canadian spontaneous coronary artery dissection cohort study: in-hospital and 30-day outcomes Inflammatory Bowel Disease and Acute Coronary Syndromes: From Pathogenesis to the Fine Line Between Bleeding and Ischemic Risk Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction The year in cardiovascular medicine 2020: acute coronary syndromes and intensive cardiac care Comparison of the Preventive Efficacy of Rosuvastatin Versus Atorvastatin in Post-Contrast Acute Kidney Injury in Patients With ST-segment Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial A randomised trial comparing two stent sizing strategies in coronary bifurcation treatment with bioresorbable vascular scaffolds - The Absorb Bifurcation Coronary (ABC) trial Clinical and Angiographic Features of Patients With Out-of-Hospital Cardiac Arrest and Acute Myocardial Infarction Improved outcomes in patients with ST-elevation myocardial infarction during the last 20 years are related to implementation of evidence-based treatments: experiences from the SWEDEHEART registry 1995-2014

Clinical Trial2020 Aug 18;76(7):812-824.

JOURNAL:J Am Coll Cardiol. Article Link

Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest

K Ameloot, P Jakkula, J Hästbacka et al. Keywords: acute myocardial infarction; cardiac arrest; cardiogenic shock

ABSTRACT

BACKGROUND - In patients with shock after acute myocardial infarction (AMI), the optimal level of pharmacologic support is unknown. Whereas higher doses may increase myocardial oxygen consumption and induce arrhythmias, diastolic hypotension may reduce coronary perfusion and increase infarct size.

 

OBJECTIVES - This study aimed to determine the optimal mean arterial pressure (MAP) in patients with AMI and shock after cardiac arrest.

 

METHODS - This study used patient-level pooled analysis of post-cardiac arrest patients with shock after AMI randomized in the Neuroprotect (Neuroprotective Goal Directed Hemodynamic Optimization in Post-cardiac Arrest Patients; NCT02541591) and COMACARE (Carbon Dioxide, Oxygen and Mean Arterial Pressure After Cardiac Arrest and Resuscitation; NCT02698917) trials who were randomized to MAP 65 mm Hg or MAP 80/85 to 100 mm Hg targets during the first 36 h after admission. The primary endpoint was the area under the 72-h high-sensitivity troponin-T curve.

 

RESULTS - Of 235 patients originally randomized, 120 patients had AMI with shock. Patients assigned to the higher MAP target (n = 58) received higher doses of norepinephrine (p = 0.004) and dobutamine (p = 0.01) and reached higher MAPs (86 ± 9 mm Hg vs. 72 ± 10 mm Hg, p < 0.001). Whereas admission hemodynamics and angiographic findings were all well-balanced and revascularization was performed equally effective, the area under the 72-h high-sensitivity troponin-T curve was lower in patients assigned to the higher MAP target (median: 1.14 μg.72 h/l [interquartile range: 0.35 to 2.31 μg.72 h/l] vs. median: 1.56 μg.72 h/l [interquartile range: 0.61 to 4.72 μg. 72 h/l]; p = 0.04). Additional pharmacologic support did not increase the risk of a new cardiac arrest (p = 0.88) or atrial fibrillation (p = 0.94). Survival with good neurologic outcome at 180 days was not different between both groups (64% vs. 53%, odds ratio: 1.55; 95% confidence interval: 0.74 to 3.22).

 

CONCLUSIONS - In post-cardiac arrest patients with shock after AMI, targeting MAP between 80/85 and 100 mm Hg with additional use of inotropes and vasopressors was associated with smaller myocardial injury.