CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

The Prognostic Significance of Periprocedural Infarction in the Era of Potent Antithrombotic Therapy: The PRAGUE-18 Substudy The year in cardiovascular medicine 2020: acute coronary syndromes and intensive cardiac care Comparison of the Preventive Efficacy of Rosuvastatin Versus Atorvastatin in Post-Contrast Acute Kidney Injury in Patients With ST-segment Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention Intravenous Statin Administration During Myocardial Infarction Compared With Oral Post-Infarct Administration Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI) Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction Association of Silent Myocardial Infarction and Sudden Cardiac Death Impact of Chronic Total Coronary Occlusion Location on Long-term Survival After Percutaneous Coronary Intervention Impact of tissue protrusion after coronary stenting in patients with ST-segment elevation myocardial infarction A Novel Circulating MicroRNA for the Detection of Acute Myocarditis

Original ResearchJanuary 26, 2022

JOURNAL:JAMA Cardiol. Article Link

Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome–Causing Culprit Lesions

D Han, A Lin, K Kuronuma et al. Keywords: ACS; plaque burden; culprit lesion

ABSTRACT

IMPORTANCE -  Distinct plaque locations and vessel geometric features predispose to altered coronary flow hemodynamics. The association between these lesion-level characteristics assessed by coronary computed tomographic angiography (CCTA) and risk of future acute coronary syndrome (ACS) is unknown.

OBJECTIVE - To examine whether CCTA-derived adverse geometric characteristics (AGCs) of coronary lesions describing location and vessel geometry add to plaque morphology and burden for identifying culprit lesion precursors associated with future ACS.


DESIGN, SETTING AND PARTICIPANTS - This substudy of ICONIC (Incident Coronary Syndromes Identified by Computed Tomography), a multicenter nested case-control cohort study, included patients with ACS and a culprit lesion precursor identified on baseline CCTA (n = 116) and propensity score–matched non-ACS controls (n = 116). Data were collected from July 20, 2012, to April 30, 2017, and analyzed from October 1, 2020, to October 31, 2021.


EXPOSURES - Coronary lesions were evaluated for the following 3 AGCs: (1) distance from the coronary ostium to lesion; (2) location at vessel bifurcations; and (3) vessel tortuosity, defined as the presence of 1 bend of greater than 90° or 3 curves of 45° to 90° using a 3-point angle within the lesion.


MAIN OUTCOME AND MEASURES - Association between lesion-level AGCs and risk of future ACS-causing culprit lesions.


RESULTS - Of 548 lesions, 116 culprit lesion precursors were identified in 116 patients (80 [69.0%] men; mean [SD], age 62.7 [11.5] years). Compared with nonculprit lesions, culprit lesion precursors had a shorter distance from the ostium (median, 35.1 [IQR, 23.6-48.4] mm vs 44.5 [IQR, 28.2-70.8] mm), more frequently localized to bifurcations (85 [73.3%] vs 168 [38.9%]), and had more tortuous vessel segments (5 [4.3%] vs 6 [1.4%]; all P< .05). In multivariable Cox regression analysis, an increasing number of AGCs was associated with a greater risk of future culprit lesions (hazard ratio [HR] for 1 AGC, 2.90 [95% CI, 1.38-6.08];P= .005; HR for ≥2 AGCs, 6.84 [95% CI, 3.33-14.04];P< .001). Adverse geometric characteristics provided incremental discriminatory value for culprit lesion precursors when added to a model containing stenosis severity, adverse morphological plaque characteristics, and quantitative plaque characteristics (area under the curve, 0.766 [95% CI, 0.718-0.814] vs 0.733 [95% CI, 0.685-0.782]). In per-patient comparison, patients with ACS had a higher frequency of lesions with adverse plaque characteristics, AGCs, or both compared with control patients (≥2 adverse plaque characteristics, 70 [60.3%] vs 50 [43.1%]; ≥2 AGCs, 92 [79.3%] vs 60 [51.7%]; ≥2 of both, 37 [31.9%] vs 20 [17.2%]; all P< .05).


CONCLUSION AND RELEVANCE - These findings support the concept that CCTA-derived AGCs capturing lesion location and vessel geometry are associated with risk of future ACS-causing culprit lesions. Adverse geometric characteristics may provide additive prognostic information beyond plaque assessment in CCTA.