CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019 Galectin-3 Levels and Outcomes After Myocardial Infarction: A Population-Based Study Universal Definition of Myocardial Infarction Efficacy and Safety of Stents in ST-Segment Elevation Myocardial Infarction Multivessel Versus Culprit-Vessel Percutaneous Coronary Intervention in Cardiogenic Shock Long-Term Prognostic Implications of Previous Silent Myocardial Infarction in Patients Presenting With Acute Myocardial Infarction Successful catheter ablation of electrical storm after myocardial infarction TACIT (High Sensitivity Troponin T Rules Out Acute Cardiac Insufficiency Trial): An Observational Study to Identify Acute Heart Failure Patients at Low Risk for Rehospitalization or Mortality Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials JACC Scientific Expert Panel

Clinical TrialVolume 72, Issue 2, July 2018

JOURNAL:J Am Coll Cardiol. Article Link

Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction

B Levy, R Clere-Jehl, A Legras et al. Keywords: acute myocardial infarctioncardiogenic shock; epinephrinenorepinephrinevasopressor

ABSTRACT


BACKGROUND - Vasopressor agents could have certain specific effects in patients with cardiogenic shock (CS) after myocardial infarction, which may influence outcome. Although norepinephrine and epinephrine are currently the most commonly used agents, no randomized trial has compared their effects, and intervention data are lacking.


OBJECTIVES - The goal of this paper was to compare in a prospective, double-blind, multicenter, randomized study, the efficacy and safety of epinephrine and norepinephrine in patients with CS after acute myocardial infarction.

METHODS - The primary efficacy outcome was cardiac index evolution, and the primary safety outcome was the occurrence of refractory CS. Refractory CS was defined as CS with sustained hypotension, end-organ hypoperfusion and hyperlactatemia, and high inotrope and vasopressor doses.

RESULTS - Fifty-seven patients were randomized into 2 study arms, epinephrine and norepinephrine. For the primary efficacy endpoint, cardiac index evolution was similar between the 2 groups (p = 0.43) from baseline (H0) to H72. For the main safety endpoint, the observed higher incidence of refractory shock in the epinephrine group (10 of 27 [37%] vs. norepinephrine 2 of 30 [7%]; p = 0.008) led to early termination of the study. Heart rate increased significantly with epinephrine from H2 to H24 while remaining unchanged with norepinephrine (p < 0.0001). Several metabolic changes were unfavorable to epinephrine compared with norepinephrine, including an increase in cardiac double product (p = 0.0002) and lactic acidosis from H2 to H24 (p < 0.0001).

CONCLUSIONS - In patients with CS secondary to acute myocardial infarction, the use of epinephrine compared with norepinephrine was associated with similar effects on arterial pressure and cardiac index and a higher incidence of refractory shock. (Study Comparing the Efficacy and Tolerability of Epinephrine and Norepinephrine in Cardiogenic Shock [OptimaCC]; NCT01367743)