CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study Prognostic Significance of Complex Ventricular Arrhythmias Complicating ST-Segment Elevation Myocardial Infarction Risk Stratification for Patients in Cardiogenic Shock After Acute Myocardial Infarction Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial Outcomes of off- and on-hours admission in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: A retrospective observational cohort study Recurrent Cardiovascular Events in Survivors of Myocardial Infarction with St-Segment Elevation (From the AMI-QUEBEC Study) Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: a retrospective study Location of the culprit coronary lesion and its association with delay in door-to-balloon time (from a multicenter registry of primary percutaneous coronary intervention) Fine particulate air pollution and hospital admissions and readmissions for acute myocardial infarction in 26 Chinese cities Percutaneous coronary intervention reduces mortality in myocardial infarction patients with comorbidities: Implications for elderly patients with diabetes or kidney disease

Clinical TrialVolume 72, Issue 2, July 2018

JOURNAL:J Am Coll Cardiol. Article Link

Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction

B Levy, R Clere-Jehl, A Legras et al. Keywords: acute myocardial infarctioncardiogenic shock; epinephrinenorepinephrinevasopressor

ABSTRACT


BACKGROUND - Vasopressor agents could have certain specific effects in patients with cardiogenic shock (CS) after myocardial infarction, which may influence outcome. Although norepinephrine and epinephrine are currently the most commonly used agents, no randomized trial has compared their effects, and intervention data are lacking.


OBJECTIVES - The goal of this paper was to compare in a prospective, double-blind, multicenter, randomized study, the efficacy and safety of epinephrine and norepinephrine in patients with CS after acute myocardial infarction.

METHODS - The primary efficacy outcome was cardiac index evolution, and the primary safety outcome was the occurrence of refractory CS. Refractory CS was defined as CS with sustained hypotension, end-organ hypoperfusion and hyperlactatemia, and high inotrope and vasopressor doses.

RESULTS - Fifty-seven patients were randomized into 2 study arms, epinephrine and norepinephrine. For the primary efficacy endpoint, cardiac index evolution was similar between the 2 groups (p = 0.43) from baseline (H0) to H72. For the main safety endpoint, the observed higher incidence of refractory shock in the epinephrine group (10 of 27 [37%] vs. norepinephrine 2 of 30 [7%]; p = 0.008) led to early termination of the study. Heart rate increased significantly with epinephrine from H2 to H24 while remaining unchanged with norepinephrine (p < 0.0001). Several metabolic changes were unfavorable to epinephrine compared with norepinephrine, including an increase in cardiac double product (p = 0.0002) and lactic acidosis from H2 to H24 (p < 0.0001).

CONCLUSIONS - In patients with CS secondary to acute myocardial infarction, the use of epinephrine compared with norepinephrine was associated with similar effects on arterial pressure and cardiac index and a higher incidence of refractory shock. (Study Comparing the Efficacy and Tolerability of Epinephrine and Norepinephrine in Cardiogenic Shock [OptimaCC]; NCT01367743)