CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Modifiable lifestyle factors and heart failure: A Mendelian randomization study Nuclear Imaging of the Cardiac Sympathetic Nervous System: A Disease-Specific Interpretation in Heart Failure A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF) Impact of Myocardial Scar on Prognostic Implication of Secondary Mitral Regurgitation in Heart Failure Sex Differences in Cardiovascular Pathophysiology: Why Women Are Overrepresented in Heart Failure With Preserved Ejection Fraction Permanent pacemaker use among patients with heart failure and preserved ejection fraction: Findings from the Acute Decompensated Heart Failure National Registry (ADHERE) National Registry Heart Failure and Atrial Fibrillation, Like Fire and Fury Atrial Fibrillation and the Prognostic Performance of Biomarkers in Heart Failure Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure

Original Research2019 Apr 10. [Epub ahead of print]

JOURNAL:Nature. Article Link

Nitrosative stress drives heart failure with preserved ejection fraction

Schiattarella GG, Altamirano F, Hill JA et al. Keywords: HFpEF; iNOS-driven dysregulation; IRE1α-XBP1 pathway; mechanism of cardiomyocyte dysfunction

ABSTRACT


Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice-elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using Nω-nitro-L-arginine methyl ester (L-NAME)-recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and S-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α-XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.