CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery 中国心力衰竭诊断和治疗指南2018 sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction Effect of Luseogliflozin on Heart Failure With Preserved Ejection Fraction in Patients With Diabetes Mellitus Cardiovascular biomarkers in patients with acute decompensated heart failure randomized to sacubitril-valsartan or enalapril in the PIONEER-HF trial A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: An expert panel consensus

Review Article2017 Mar;22(2):243-261.

JOURNAL:Heart Fail Rev. Article Link

SPECT and PET in ischemic heart failure

Angelidis G, Giamouzis G, Karagiannis G et al. Keywords: 18-fluoro-deoxyglucose; Heart failure; Ischemic; PET; Positron emission tomography; Rubidium-82; SPECT; Single photon emission computed tomography; Technetium-99 m; Thallium-201; Viability

ABSTRACT


Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.