CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) Cardiac resynchronization therapy with a defibrillator (CRTd) in failing heart patients with type 2 diabetes mellitus and treated by glucagon-like peptide 1 receptor agonists (GLP-1 RA) therapy vs. conventional hypoglycemic drugs: arrhythmic burden, hospitalizations for heart failure, and CRTd responders rate Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure Sex- and Race-Related Differences in Characteristics and Outcomes of Hospitalizations for Heart Failure With Preserved Ejection Fraction Metformin Lowers Body Weight But Fails to Increase Insulin Sensitivity in Chronic Heart Failure Patients without Diabetes: a Randomized, Double-Blind, Placebo-Controlled Study Titration of Medical Therapy for Heart Failure With Reduced Ejection Fraction Aliskiren, Enalapril, or Aliskiren and Enalapril in Heart Failure Association of Left Ventricular Systolic Function With Incident Heart Failure in Late Life Heart Failure With Recovered Left Ventricular Ejection Fraction: JACC Scientific Expert Panel Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure

Review Article2020 Sep 21;S0033-0620(20)30158-4.

JOURNAL:Prog Cardiovasc Dis. Article Link

Mechanical circulatory support devices in advanced heart failure: 2020 and beyond

JL Vieira, HO Ventura, MR Mehra et al. Keywords: advanced heart failure; cardiogenic shock; hemocompatibility; INTERMACS; LVAD; left ventricular assist device; mechanical circulatory support

ABSTRACT

Substantial progress in the field of mechanical circulatory support (MCS) has expanded the treatment options for patients with advanced-stage heart failure (HF). Currently available MCS devices can be implanted percutaneously or surgically. They can also be configured to support the left, right, or both ventricles, offering varying levels of circulatory support. Short-term temporary MCS devices are primarily used in high-risk percutaneous coronary intervention, cardiogenic shock, and post-cardiac arrest, while durable left ventricular assist systems (LVAS) are increasingly utilized either as a bridge-to-transplant, bridge to decision, or as a destination therapy. The evolution from older pulsatile devices to continuous-flow LVAS and the incorporation of smaller pumps, with no valves, fewer moving parts, and improved hemocompatibility has translated into improved clinical outcomes, greater durability, fewer adverse events, and reduced overall cost of care. However, despite marked advances in device design and clinical management, determining MCS candidacy is often difficult and requires the integration of clinical, biomarker, imaging, exercise, and hemodynamic data. This review aims to provide a summary of the current use of short-term and durable MCS devices in the treatment of advanced-stage HF, highlighting several aspects of LVAS support and the challenges that remain.