CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

A Fully Magnetically Levitated Left Ventricular Assist Device — Final Report Economic and Quality-of-Life Outcomes of Natriuretic Peptide–Guided Therapy for Heart Failure Diagnosis of Nonischemic Stage B Heart Failure in Type 2 Diabetes Mellitus: Optimal Parameters for Prediction of Heart Failure Angiotensin–neprilysin inhibition versus enalapril in heart failure Stage B heart failure: management of asymptomatic left ventricular systolic dysfunction SGLT2 Inhibitors in Patients With Heart Failure With Reduced Ejection Fraction: A Meta-Analysis of the EMPEROR-Reduced and DAPA-HF Trials Glucose-lowering Drugs or Strategies, Atherosclerotic Cardiovascular Events, and Heart Failure in People With or at Risk of Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis of Randomised Cardiovascular Outcome Trials 2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure: A Report of the American College of Cardiology Solution Set Oversight Committee Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes 3D Printing and Heart Failure: The Present and the Future

Review Article2018 Jun 13.[Epub ahead of print]

JOURNAL:Eur Heart J. Article Link

Heart failure with preserved ejection fraction: from mechanisms to therapies

Lam CSP, Voors AA, de Boer RA et al. Keywords: HFpEF; mechanisms; therapy

ABSTRACT


This review aims to provide a translational perspective on recent developments in heart failure with preserved ejection fraction (HFpEF), linking mechanistic insights to potential therapies. A key concept in this review is that HFpEF is a haemodynamic condition wherein the heart fails to keep up with the circulatory demands of the body, or does so at the expense of raised left ventricular filling pressures. We, therefore, propose that the 'final common pathway' for development of congestion, i.e. basic haemodynamic mechanisms of increased left ventricular end-diastolic pressure, left atrial hypertension, pulmonary venous congestion, and plasma volume expansion, represents important initial targets for therapy in HFpEF. Accordingly, we group this review into six mechanisms translating into potential therapies for HFpEF: beginning with three haemodynamic mechanisms (left atrial hypertension, pulmonary hypertension, and plasma volume expansion), and working backward to three potential molecular mechanisms [systemic microvascular inflammation, cardiometabolic functional abnormalities, and cellular (titin)/extracellular (fibrosis) structural abnormalities].