CBS 2019
CBSMD教育中心
English

肺动脉高压

科研文章

荐读文献

中国肺动脉高压诊断与治疗指南(2021版) The right ventricle in pulmonary hypertension 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) Immunotherapy of Endothelin-1 Receptor Type A for Pulmonary Arterial Hypertension Transthoracic echocardiography for the evaluation of children and adolescents with suspected or confirmed pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and D6PK Factors associated with pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc) Pulmonary Hypertension Caused by a Coconut Left Atrium Echocardiographic Screening for Pulmonary Hypertension in Congenital Heart Disease: JACC Review Topic of the Week A Case of Pulmonary Hypertension Associated with Idiopathic Hypereosinophilic Syndrome Left main coronary artery compression in pulmonary hypertension

Original Research2020 Nov 25.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Left main coronary artery compression in pulmonary hypertension

JE Labin, R Saggar, EH Yang et al. Keywords: PAH; left main coronary artery compression;

ABSTRACT

Extrinsic compression of the left main coronary artery (LMCA) by a dilated pulmonary artery (PA) in the setting of pulmonary arterial hypertension (PAH) is an increasingly recognized disease entity. LMCA compression has been associated with angina, arrhythmia, heart failure, and sudden cardiac death in patients with PAH. Recent studies suggest that at least 6% of patients with PAH have significant LMCA compression. Screening for LMCA compression can be achieved with computed coronary tomography angiography, with a particular emphasis on assessment of PA size and any associated downward displacement and reduced takeoff angle of the LMCA. Indeed, evidence of a dilated PA (>40 mm), a reduced LMCA takeoff angle (<60°), and/or LMCA stenosis on CCTA imaging should prompt further diagnostic evaluation. Coronary angiography in conjunction with intravascular imaging has proven effective in diagnosing LMCA compression and guiding subsequent treatment. While optimal medical therapy and surgical correction remain in the clinician's arsenal, percutaneous coronary intervention has emerged as an effective treatment for LMCA compression. Given the prevalence of LMCA compression, its associated morbidity, and mortality, and the wide array of successful treatment strategies, maintaining a high degree of suspicion for this condition, and understanding the potential treatment strategies is critical.