CBS 2019
CBSMD教育中心
English

肺动脉高压

科研文章

荐读文献

Levosimendan Improves Hemodynamics and Exercise Tolerance in PH-HFpEF: Results of the Randomized Placebo-Controlled HELP Trial Contemporary prevalence of pulmonary arterial hypertension in adult congenital heart disease following the updated clinical classification Echocardiographic Screening for Pulmonary Hypertension in Congenital Heart Disease: JACC Review Topic of the Week 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) Immunotherapy of Endothelin-1 Receptor Type A for Pulmonary Arterial Hypertension Factors associated with pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc) Bridging the Gap Between Epigenetic and Genetic in PAH A Case of Pulmonary Hypertension Associated with Idiopathic Hypereosinophilic Syndrome Left main coronary artery compression in pulmonary hypertension Transthoracic echocardiography for the evaluation of children and adolescents with suspected or confirmed pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and D6PK

Clinical Trial2018 Apr-Jun;8(2):2045894018768290.

JOURNAL:Pulm Circ. Article Link

Skeletal muscle mitochondrial oxidative phosphorylation function in idiopathic pulmonary arterial hypertension: in vivo and in vitro study

Sithamparanathan S, Rocha MC, Parikh JD et al. Keywords: exercise; oxygen utilization; peripheral muscle

ABSTRACT


Mitochondrial dysfunction within the pulmonary vessels has been shown to contribute to the pathology of idiopathic pulmonary arterial hypertension (IPAH). We investigated the hypothesis of whether impaired exercise capacity observed in IPAH patients is in part due to primary mitochondrial oxidative phosphorylation (OXPHOS) dysfunction in skeletal muscle. This could lead to potentially new avenues of treatment beyond targeting the pulmonary vessels. Nine clinically stable participants with IPAH underwent cardiopulmonary exercise testing, in vivo and in vitro assessment of mitochondrial function by 31P-magnetic resonance spectroscopy (31P-MRS) and laboratory muscle biopsy analysis. 31P-MRS showed abnormal skeletal muscle bioenergetics with prolonged recovery times of phosphocreatine and abnormal muscle pH handling. Histochemistry and quadruple immunofluorescence performed on muscle biopsies showed normal function and subunit protein abundance of the complexes within the OXPHOS system. Our findings suggest that there is no primary mitochondrial OXPHOS dysfunction but raises the possibility of impaired oxygen delivery to the mitochondria affecting skeletal muscle bioenergetics during exercise.