CBS 2019
CBSMD教育中心
English

动脉粥样硬化性心血管疾病预防

科研文章

荐读文献

Cellular origin and developmental program of coronary angiogenesis Lysed Erythrocyte Membranes Promote Vascular Calcification: Possible Role of Erythrocyte-Derived Nitric Oxide Potential Mechanisms of In-stent Neointimal Atherosclerotic Plaque Formation Plaque Rupture, compared to Plaque Erosion, is associated with Higher Level of Pan-coronary Inflammation Prognostic implications of ischemia with nonobstructive coronary arteries (INOCA): Understanding risks for improving treatment Nicotine promotes vascular calcification via intracellular Ca21-mediated, Nox5-induced oxidative stress, and extracellular vesicle release in vascular smooth muscle cells Comprehensive Management of Cardiovascular Risk Factors for Adults With Type 2 Diabetes: A Scientific Statement From the American Heart Association Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings Independent Association of Lipoprotein(a) and Coronary Artery Calcification With Atherosclerotic Cardiovascular Risk Autologous CD34+ Stem Cell Therapy Increases Coronary Flow Reserve and Reduces Angina in Patients With Coronary Microvascular Dysfunction

Original ResearchVolume 74, Issue 1, July 2019

JOURNAL:J Am Coll Cardiol. Article Link

Negative Risk Markers for Cardiovascular Events in the Elderly

MB Mortensen, V Fuster, P Muntendam et al. Keywords: statin prevention; elderly; galectin-3; risk prediction; subclinical atherosclerosis

ABSTRACT


BACKGROUND- Cardiovascular risk increases dramatically with age, leading to nearly universal risk-based statin eligibility in the elderly population. To limit overtreatment, elderly individuals at truly low risk need to be identified.

 

OBJECTIVES- Discovering negativerisk markers able to identify elderly individuals at low short-term risk for coronary heart disease and cardiovascular disease.

 

METHODS- In 5,805 BioImage participants (mean age 69 years; median follow-up 2.7 years), the authors evaluated 13 candidate markers: coronary artery calcium (CAC) = 0, CAC 10, no carotid plaque, no family history, normal ankle-brachial index, test result <25th percentile (carotid intima-media thickness, apolipoprotein B, galectin-3, high-sensitivity C-reactive protein, lipoprotein(a), N-terminal proB-type natriuretic peptide, and transferrin), and apolipoprotein A1 >75th percentile. Negative risk marker performance was compared using patient-specific diagnostic likelihood ratio (DLR) and binary net reclassification index (NRI).

 

RESULTS- CAC = 0 and CAC 10 were the strongest negative risk markers with mean DLRs of 0.20 and 0.20 for coronary heart disease (i.e., 80% lower risk than expected from traditional risk factor assessment) and 0.41 and 0.48 for cardiovascular disease, respectively, followed by galectin-3 <25th percentile (DLR 0.44 and 0.43, respectively) and absence of carotid plaque (DLR 0.39 and 0.65, respectively). Results obtained by other candidate markers were less impressive. Accurate downward risk reclassification across the Class I statin-eligibility threshold defined by the American College of Cardiology/American Heart Association was largest for CAC = 0 (NRI 0.23) and CAC 10 (NRI 0.28), followed by galectin-3 <25th percentile (NRI 0.14) and absence of carotid plaque (NRI 0.08).

 

CONCLUSIONS - Elderly individuals with CAC = 0, CAC 10, low galectin-3, or no carotid plaque had remarkable low cardiovascular risk, calling into question the appropriateness of a treat-all approach in the elderly population.