CBS 2019
CBSMD教育中心
English

动脉粥样硬化性心血管疾病预防

科研文章

荐读文献

Cardiovascular Considerations in Caring for Pregnant Patients: A Scientific Statement From the American Heart Association Regional Heterogeneity in the Coronary Vascular Response in Women With Chest Pain and Nonobstructive Coronary Artery Disease Effect of Evolocumab on Complex Coronary Disease Requiring Revascularization 2019 ACC/AHA/ASE Advanced Training Statement on Echocardiography (Revision of the 2003 ACC/AHA Clinical Competence Statement on Echocardiography): A Report of the ACC Competency Management Committee Identifying coronary artery disease patients at risk for sudden and/or arrhythmic death: remaining limitations of the electrocardiogram Burden of Cardiovascular Diseases in China, 1990-2016: Findings From the 2016 Global Burden of Disease Study The Burden of Cardiovascular Diseases Among US States, 1990-2016 Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis The Use of Sex-Specific Factors in the Assessment of Women’s Cardiovascular Risk The Prevalence of Myocardial Bridging Associated with Coronary Endothelial Dysfunction in Patients with Chest Pain and Non-Obstructive Coronary Artery Disease

Review Article2020 Jun 13;jeaa048.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Non-obstructive High-Risk Plaques Increase the Risk of Future Culprit Lesions Comparable to Obstructive Plaques Without High-Risk Features: The ICONIC Study

RA Ferraro, AR van Rosendael, FY Lin et al. Keywords: coronary computed tomographic angiography, CAD, MI

ABSTRACT

AIMS - High-risk plaque (HRP) and non-obstructive coronary artery disease independently predict adverse events, but their importance to future culprit lesions has not been resolved. We sought to determine in patients prior to confirmed acute coronary syndrome (ACS) the association between lesion percent diameter stenosis (%DS), and the absolute number and prevalence of HRP. The secondary objective was to examine the relative importance of non-obstructive HRP in future culprit lesions.


METHODS AND RESULTS - Within the ICONIC study, a nested case-control study of patients undergoing coronary computed tomographic angiography (coronary CT), we included ACS cases with culprit lesions confirmed by invasive coronary angiography and coregistered to baseline coronary CT. Quantitative CT was used to evaluate obstructive (≥50%) and non-obstructive (<50%) diameter stenosis, with HRP defined as ≥2 features of spotty calcification, positive remodelling, or low-attenuation plaque at baseline. A total of 234 patients with downstream ACS over 54 (interquartile range 5-525.5) days exhibited 198/898 plaques with HRP on coronary CT. While HRP was less prevalent in non-obstructive (19.7%, 161/819) than obstructive lesions (46.8%, 37/79, P < 0.001), non-obstructive plaque comprised 81.3% (161/198) of HRP lesions overall. Among the 128 patients with identifiable culprit lesion precursors, the adjusted hazard ratio (HR) was 1.85 [95% confidence interval (CI) 1.26-2.72] for HRP, with no interaction between %DS and HRP (P = 0.82). Compared to non-obstructive HRP lesions, obstructive lesions without HRP exhibited a non-significant HR of 1.41 (95% CI 0.61-3.25, P = 0.42).


CONCLUSIONS - While HRP is more prevalent among obstructive lesions, non-obstructive HRP lesions outnumber those that are obstructive and confer risk clinically approaching that of obstructive lesions without HRP.