CBS 2019
CBSMD教育中心
English

动脉粥样硬化性心血管疾病预防

科研文章

荐读文献

Adenosine and adenosine receptor-mediated action in coronary microcirculation Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis Treatment and prevention of lipoprotein(a)-mediated cardiovascular disease: the emerging potential of RNA interference therapeutics The Year in Cardiovascular Medicine 2020: Coronary Prevention: Looking back on the Year in Cardiovascular Medicine for 2020 in the field of coronary prevention is Professor Ramon Estruch, Dr Luis Ruilope, and Professor Francesco Cosentino. Mark Nicholls meets them When, where, and how to target vascular inflammation in the post-CANTOS era? Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA) Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials Comprehensive Investigation of Circulating Biomarkers and their Causal Role in Atherosclerosis-related Risk Factors and Clinical Events Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS)

Clinical Trial2020;382:1395-407.

JOURNAL:N Engl J Med Article Link

Initial Invasive or Conservative Strategy for Stable Coronary Disease

DJ Maron, JS Hochman and for the ISCHEMIA Research Group. Keywords: invasive vs. conservative therapy; SCD

ABSTRACT

BACKGROUND - Among patients with stable coronary disease and moderate or severe ischemia, whether clinical outcomes are better in those who receive an invasive intervention plus medical therapy than in those who receive medical therapy alone is uncertain.


METHODS- We randomly assigned 5179 patients with moderate or severe ischemia to an initial invasive strategy (angiography and revascularization when feasible) and medical therapy or to an initial conservative strategy of medical therapy alone and angiography if medical therapy failed. The primary outcome was a composite of death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. A key secondary outcome was death from cardiovascular causes or myocardial infarction.


RESULTS - Over a median of 3.2 years, 318 primary outcome events occurred in the invasive-strategy group and 352 occurred in the conservative-strategy group. At 6 months, the cumulative event rate was 5.3% in the invasive-strategy group and 3.4% in the conservative-strategy group (difference, 1.9 percentage points; 95% confidence interval [CI], 0.8 to 3.0); at 5 years, the cumulative event rate was 16.4% and 18.2%, respectively (difference, 1.8 percentage points; 95% CI, 4.7 to 1.0). Results were similar with respect to the key secondary outcome. The incidence of the primary outcome was sensitive to the definition of myocardial infarction; a secondary analysis yielded more procedural myocardial infarctions of uncertain clinical importance. There were 145 deaths in the invasive-strategy group and 144 deaths in the conservative-strategy group (hazard ratio, 1.05; 95% CI, 0.83 to 1.32).


CONCLUSIONS - Among patients with stable coronary disease and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of ischemic cardiovascular events or death from any cause over a median of 3.2 years. The trial findings were sensitive to the definition of myocardial infarction that was used. (Funded by the National Heart, Lung, and Blood Institute and others; ISCHEMIA ClinicalTrials.gov number, NCT01471522. opens in new tab.)