CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Association Between Diastolic Dysfunction and Health Status Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis Increased Risk of Valvular Heart Disease in Systemic Sclerosis: An Underrecognized Cardiac Complication Suture- or Plug-Based Large-Bore Arteriotomy Closure: A Pilot Randomized Controlled Trial Relationship Between Hospital Surgical Aortic Valve Replacement Volume and Transcatheter Aortic Valve Replacement Outcomes 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Timing of intervention in asymptomatic patients with valvular heart disease Aortic Valve Stenosis Treatment Disparities in the Underserved JACC Council Perspectives Poor Long-Term Survival in Patients With Moderate Aortic Stenosis Transcatheter Aortic Valve Replacement vs Surgical Replacement in Patients With Pure Aortic Insufficiency

Review Article03 January 2020

JOURNAL:Eur Heart J. Article Link

Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis

L Faroux, S Chen, J Rodés-Cabau et al. Keywords: heart failure; left bundle-branch block; proton pump inhibitors; persistence pacemaker;permanent transcatheter aortic-valve implantation

ABSTRACT


AIMS - The clinical impact of new-onset persistent left bundle branch block (NOP-LBBB) and permanent pacemaker implantation (PPI) on transcatheter aortic valve replacement (TAVR) recipients remains controversial. We aimed to evaluate the impact of (i) periprocedural NOP-LBBB and PPI post-TAVR on 1-year all-cause death, cardiac death, and heart failure hospitalization and (ii) NOP-LBBB on the need for PPI at 1-year follow-up.

 

METHODS AND RESULTS - We performed a systematic search from PubMed and EMBASE databases for studies reporting raw data on 1-year clinical impact of NOP-LBBB or periprocedural PPI post-TAVR. Data from 30 studies, including 7792 patients (12 studies) and 42 927 patients (21 studies) for the evaluation of the impact of NOP-LBBB and PPI after TAVR were sourced, respectively. NOP-LBBB was associated with an increased risk of all-cause death [risk ratio (RR) 1.32, 95% confidence interval (CI) 1.171.49; P < 0.001], cardiac death (RR 1.46, 95% CI 1.201.78; P < 0.001), heart failure hospitalization (RR 1.35, 95% CI 1.051.72; P = 0.02), and PPI (RR 1.89, 95% CI 1.582.27; P < 0.001) at 1-year follow-up. Periprocedural PPI after TAVR was associated with a higher risk of all-cause death (RR 1.17, 95% CI 1.111.25; P < 0.001) and heart failure hospitalization (RR 1.18, 95% CI 1.031.36; P = 0.02). Permanent pacemaker implantation was not associated with an increased risk of cardiac death (RR 0.84, 95% CI 0.671.05; P = 0.13).

 

CONCLUSION - NOP-LBBB and PPI after TAVR are associated with an increased risk of all-cause death and heart failure hospitalization at 1-year follow-up. Periprocedural NOP-LBBB also increased the risk of cardiac death and PPI within the year following the procedure. Further studies are urgently warranted to enhance preventive measures and optimize the management of conduction disturbances post-TAVR.