CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Decline in Left Ventricular Ejection Fraction During Follow-Up in Patients With Severe Aortic Stenosis Randomized Evaluation of TriGuard 3 Cerebral Embolic Protection After Transcatheter Aortic Valve Replacement: REFLECT II Anticoagulation After Surgical or Transcatheter Bioprosthetic Aortic Valve Replacement Single Versus Dual Antiplatelet Therapy Following TAVR: A Systematic Review and Meta-Analysis of Randomized Controlled Trials Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Replacement Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients Comparison of 1-Year Pre- And Post-Transcatheter Aortic Valve Replacement Hospitalization Rates: A Population-Based Cohort Study Relationship Between Hospital Surgical Aortic Valve Replacement Volume and Transcatheter Aortic Valve Replacement Outcomes Transcatheter Aortic Valve Replacement in Patients With Multivalvular Heart Disease

Original Research2020 Dec 4;CIRCINTERVENTIONS120009496.

JOURNAL:Circ Cardiovasc Interv. Article Link

Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study

BJ Forrestal, BC Case, C Yerasi et al. Keywords: coronary obstruction; heart valves; TAVR; valve-in-valve

Full Text PDF


BACKGROUND - The supra-annular leaflet position and tall stent frame of the self-expanding Evolut PRO or Evolut PRO+ transcatheter heart valves (THVs) may cause coronary occlusion during transcatheter aortic valve replacement (TAVR)-in-TAVR and present challenges for future coronary access. We sought to evaluate the risk of TAVR-in-TAVR with Evolut PRO or Evolut PRO+ THVs and the feasibility of future coronary access.


METHODS - The CoreValve Evolut PRO Prospective Registry (EPROMPT; NCT03423459) prospectively enrolled patients with symptomatic severe aortic stenosis to undergo TAVR using a commercially available latest generation self-expanding THV at 2 centers in the United States. Computed tomography was performed 30 days after TAVR, which we used to simulate TAVR-in-TAVR with a second Evolut PRO or Evolut PRO+ THV and evaluate for risk of coronary obstruction and feasibility of future coronary access.


RESULTS - Eighty-one patients enrolled with interpretable computed tomography are reported herein. Computed tomography simulation predicted sinus of Valsalva sequestration and resultant coronary obstruction during future TAVR-in-TAVR in up to 23% of patients. Computed tomography simulation predicted that the position of the pinned THV leaflets would hinder future coronary access in up to 78% of patients after TAVR-in-TAVR.


CONCLUSIONS - Further THV design improvements and leaflet modification strategies are needed to mitigate the risk of coronary obstruction during TAVR-in-TAVR with self-expanding THVs and to facilitate future coronary access.


REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT03423459.