CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Ascending Aortic Length and Risk of Aortic Adverse Events: The Neglected Dimension von Willebrand Factor and Management of Heart Valve Disease: JACC Review Topic of the Week Temporal Trends, Characteristics, and Outcomes of Infective Endocarditis After Transcatheter Aortic Valve Replacement Impact of Incomplete Coronary Revascularization on Late Ischemic and Bleeding Events after Transcatheter Aortic Valve Replacement Change in Kidney Function and 2-Year Mortality After Transcatheter Aortic Valve Replacement Cardiac surgery following transcatheter aortic valve replacement A Controlled Trial of Rivaroxaban After Transcatheter Aortic-Valve Replacement Coronary Access After TAVR With a Self-Expanding Bioprosthesis: Insights From Computed Tomography Impact of Pre-Existing and New-Onset Atrial Fibrillation on Outcomes After Transcatheter Aortic Valve Replacement Ambulatory Electrocardiogram Monitoring in Patients Undergoing Transcatheter Aortic Valve Replacement: JACC State-of-the-Art Review

Original Research2020 Dec 30;jeaa342.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement

M Koschutnik, V Dannenberg, C Nitsche et al. Keywords: CMR; RV function; TAVR; aortic stenosis; echocardiography; outcome

ABSTRACT

AIMS - Right ventricular dysfunction (RVD) on echocardiography has been shown to predict outcomes in patients undergoing transcatheter aortic valve replacement (TAVR). However, a comparison with the gold standard, RV ejection fraction (EF) on cardiovascular magnetic resonance (CMR), has never been performed.

 

METHODS AND RESULTS - Consecutive patients scheduled for TAVR underwent echocardiography and CMR. RV fractional area change (FAC), tricuspid annular plane systolic excursion, RV free-lateral-wall tissue Doppler (S'), and strain were assessed on echocardiography, and RVEF on CMR. Patients were prospectively followed. Adjusted regression analyses were used to report the strength of association per 1-SD decline for each RV function parameter with (i) N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels, (ii) prolonged in-hospital stay (>14 days), and (iii) a composite of heart failure hospitalization and death. Two hundred and four patients (80.9 ± 6.6 y/o; 51% female; EuroSCORE-II: 6.3 ± 5.1%) were included. At a cross-sectional level, all RV function parameters were associated with NT-proBNP levels, but only FAC and RVEF were significantly associated with a prolonged in-hospital stay [adjusted odds ratio 1.86, 95% confidence interval (CI) 1.07-3.21; P = 0.027 and 2.29, 95% CI 1.43-3.67; P = 0.001, respectively]. A total of 56 events occurred during follow-up (mean 13.7 ± 9.5 months). After adjustment for the EuroSCORE-II, only RVEF was significantly associated with the composite endpoint (adjusted hazard ratio 1.70, 95% CI 1.32-2.20; P < 0.001).

 

CONCLUSION - RVD as defined by echocardiography is associated with an advanced disease state but fails to predict outcomes after adjustment for pre-existing clinical risk factors in TAVR patients. In contrast, RVEF on CMR is independently associated with heart failure hospitalization and death.