CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Chronic thromboembolic pulmonary hypertension Active and Passive Vaccination for Pulmonary Arterial Hypertension: A Novel Therapeutic Paradigm Asia Pacific Consensus Document on Coronary Bifurcation Interventions Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data Optical Coherence Tomography-Guided Percutaneous Coronary Intervention in ST-Segment-Elevation Myocardial Infarction: A Prospective Propensity-Matched Cohort of the Thrombectomy Versus Percutaneous Coronary Intervention Alone Trial Optimal threshold of postintervention minimum stent area to predict in-stent restenosis in small coronary arteries: An optical coherence tomography analysis Histopathological validation of optical coherence tomography findings of the coronary arteries Left main coronary artery compression in pulmonary hypertension

Original Research2017 May 15;119(10):1512-1517.

JOURNAL:Am J Cardiol. Article Link

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum

Amano H, Koizumi M, Okubo R et al. Keywords: OCT; internal running vasa vasorum; plaque vulnerability; blood flow

ABSTRACT


It has been reported that the internal running vasa vasorum (VV) was associated with plaque vulnerability, and microchannels in optical coherence tomography (OCT) are consistent pathologically with VV. We investigated plaque vulnerability and incidence of slow flow during percutaneous coronary intervention of the internal longitudinal running VV. Subjects were 71 lesions that underwent OCT before percutaneous coronary intervention. Internal running VV was defined as intraplaque neovessels running from the adventitia to plaque. Lesions with internal running VV were found in 47% (33 of 71). Compared with lesions without internal running VV, lesions with internal running VV showed significantly higher incidence of intimal laceration (64% [21 of 33] vs 16% [6 of 38], p <0.001), lipid-rich plaque (79% [26 of 33] vs 26% [10 of 38], p <0.001), plaque rupture (52% [17 of 33] vs 13% [5 of 38], p <0.001), thin-cap fibroatheroma (58% [19 of 33] vs 11% [4 of 38], p <0.001), macrophage accumulation (61% [20 of 33] vs 26% [10 of 38], p = 0.004), intraluminal thrombus (36% [12 of 33] vs 3% [1 of 38], p <0.001), and slow flow after stent implantation (42% [14 of 33] vs 13% [5 of 38], p = 0.007). The multivariable analysis showed that internal running VV was an independent predictor of slow flow after stent implantation (odds ratio 4.23, 95% confidence interval 1.05 to 17.01, p = 0.042). In conclusion, compared with those without, plaques with internal running VV in OCT had high plaque vulnerability with more intimal laceration, lipid-rich plaque, plaque rupture, thin-cap fibroatheroma, macrophage accumulation, and intraluminal thrombus, and they had high incidence of slow flow after stent implantation.