CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society 2017 AHA/ACC Clinical Performance and Quality Measures for Adults With ST-Elevation and Non–ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures White Blood Cell Count and Major Adverse Cardiovascular Events After Percutaneous Coronary Intervention in the Contemporary Era: Insights From the PARIS Study (Patterns of Non-Adherence to Anti-Platelet Regimens in Stented Patients Registry) Robotics in percutaneous cardiovascular interventions Correction of a pathogenic gene mutation in human embryos Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes

Volume 74, Issue 16, October 2019

JOURNAL:J Am Coll Cardiol. Article Link

Nonproportional Hazards for Time-to-Event Outcomes in Clinical Trials: JACC Review Topic of the Week

J Gregson, L Sharples, GW Stone et al. Keywords: clinical trials; Cox proportional hazards; nonproportional hazards; statistics; time-to-event outcomes; trial design

ABSTRACT


Most major clinical trials in cardiology report time-to-event outcomes using the Cox proportional hazards model so that a treatment effect is estimated as the hazard ratio between groups, accompanied by its 95% confidence interval and a log-rank p value. But nonproportionality of hazards (non-PH) over time occurs quite often, making alternative analysis strategies appropriate. This review presents real examples of cardiology trials with different types of non-PH: an early treatment effect, a late treatment effect, and a diminishing treatment effect. In such scenarios, the relative merits of a Cox model, an accelerated failure time model, a milestone analysis, and restricted mean survival time are examined. Some post hoc analyses for exploring any specific pattern of non-PH are also presented. Recommendations are made, particularly regarding how to handle non-PH in pre-defined Statistical Analysis Plans, trial publications, and regulatory submissions.