CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Can the Vanishing Stent Reappear? Fix the Technique, or Fix the Device? Causes of Mortality After Percutaneous Coronary Intervention: Insights From the VA Clinical Assessment, Reporting, and Tracking Program 2019 ESC Guidelines for the management of patients with supraventricular tachycardia The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC): Developed in collaboration with the Association for European Paediatric and Congenital Cardiology (AEPC)he management of patients with) Long-term Survival following Multivessel Revascularization in Patients with Diabetes (FREEDOM Follow-On Study) Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity Hs-cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD - A comparative analysis from the KAROLA study 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study) New AHA/ACC/HRS Guidance on Sudden Cardiac Death Prevention

Volume 74, Issue 16, October 2019

JOURNAL:J Am Coll Cardiol. Article Link

Nonproportional Hazards for Time-to-Event Outcomes in Clinical Trials: JACC Review Topic of the Week

J Gregson, L Sharples, GW Stone et al. Keywords: clinical trials; Cox proportional hazards; nonproportional hazards; statistics; time-to-event outcomes; trial design

ABSTRACT


Most major clinical trials in cardiology report time-to-event outcomes using the Cox proportional hazards model so that a treatment effect is estimated as the hazard ratio between groups, accompanied by its 95% confidence interval and a log-rank p value. But nonproportionality of hazards (non-PH) over time occurs quite often, making alternative analysis strategies appropriate. This review presents real examples of cardiology trials with different types of non-PH: an early treatment effect, a late treatment effect, and a diminishing treatment effect. In such scenarios, the relative merits of a Cox model, an accelerated failure time model, a milestone analysis, and restricted mean survival time are examined. Some post hoc analyses for exploring any specific pattern of non-PH are also presented. Recommendations are made, particularly regarding how to handle non-PH in pre-defined Statistical Analysis Plans, trial publications, and regulatory submissions.