CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Outcomes in Women and Minorities Compared With White Men 1 Year After Everolimus-Eluting Stent Implantation: Insights and Results From the PLATINUM Diversity and PROMUS Element Plus Post-Approval Study Pooled Analysis Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation A Test in Context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease A Special Report From the American Heart Association and American College of Cardiolog 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society Transcatheter Mitral-Valve Repair in Patients with Heart Failure Effect of Aspirin on All-Cause Mortality in the Healthy Elderly Mortality Differences Associated With Treatment Responses in CANTOS and FOURIER: Insights and Implications

Original Research2017 Aug 24;548(7668):413-419.

JOURNAL:Nature. Article Link

Correction of a pathogenic gene mutation in human embryos

Ma H, Marti-Gutierrez N, Mitalipov S et al. Keywords: ​genome editing; MYBPC3 mutation; inherited hypertrophic cardiomyopathy

ABSTRACT


Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.