CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study) Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation Routine Continuous Electrocardiographic Monitoring Following Percutaneous Coronary Interventions Sudden Cardiac Arrest Survivorship: A Scientific Statement From the American Heart Association The year in cardiovascular medicine 2020: interventional cardiology Appropriate Use Criteria and Health Status Outcomes Following Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From the OPEN-CTO Registry Overall and Cause-Specific Mortality in Randomized Clinical Trials Comparing Percutaneous Interventions With Coronary Bypass Surgery: A Meta-analysis

Original Research2017 Nov 14;70(20):2504-2515.

JOURNAL:J Am Coll Cardiol. Article Link

A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration

Natsumeda M, Florea V, Hare JM et al. Keywords: allogeneic; cardiac stem cell; ischemic cardiomyopathy; mesenchymal stem cell

ABSTRACT


BACKGROUND - The combination of autologous mesenchymal stem cells (MSCs) and cardiac stem cells(CSCs) synergistically reduces scar size and improves cardiac function in ischemic cardiomyopathy. Whereas allogeneic (allo-)MSCs are immunoevasive, the capacity of CSCs to similarly elude the immune system remains controversial, potentially limiting the success of allogeneic cell combination therapy (ACCT).


OBJECTIVES - This study sought to test the hypothesis that ACCT synergistically promotes cardiac regenerationwithout provoking immunologic reactions.


METHODS - Göttingen swine with experimental ischemic cardiomyopathy were randomized to receive transendocardial injections of allo-MSCs + allo-CSCs (ACCT: 200 million MSCs/1 million CSCs, n = 7), 200 million allo-MSCs (n = 8), 1 million allo-CSCs (n = 4), or placebo (Plasma-Lyte A, n = 6). Swine were assessed by cardiac magnetic resonance imaging and pressure volume catheterization. Immune response was tested by histologic analyses.


RESULTS - Both ACCT and allo-MSCs reduced scar size by -11.1 ± 4.8% (p = 0.012) and -9.5 ± 4.8% (p = 0.047), respectively. Only ACCT, but not MSCs or CSCs, prevented ongoing negative remodeling by offsetting increases in chamber volumes. Importantly, ACCT exerted the greatest effect on systolic function, improving the end-systolic pressure-volume relation (+0.98 ± 0.41 mm Hg/ml; p = 0.016). The ACCT group had more phospho-histone H3+ (a marker of mitosis) cardiomyocytes (p = 0.04), and noncardiomyocytes (p = 0.0002) than did the placebo group in some regions of the heart. Inflammatory sites in ACCT and MSC-treated swine contained immunotolerant CD3+/CD25+/FoxP3+ regulatory T cells (p < 0.0001). Histologic analysis showed absent to low-grade inflammatory infiltrates without cardiomyocyte necrosis.


CONCLUSIONS - ACCT demonstrates synergistic effects to enhance cardiac regeneration and left ventricular functional recovery in a swine model of chronic ischemic cardiomyopathy without adverse immunologic reaction. Clinical translation to humans is warranted.


Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.