CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

2-Year Outcomes After Stenting of Lipid-Rich and Nonrich Coronary Plaques Rare Genetic Variants Associated With Sudden Cardiac Death in Adults Impact of Coronary Lesion Complexity in Percutaneous Coronary Intervention: One-Year Outcomes From the Large, Multicentre e-Ultimaster Registry Thin Composite-Wire-Strut Zotarolimus-Eluting Stents Versus Ultrathin-Strut Sirolimus-Eluting Stents in BIONYX at 2 Years Management of Percutaneous Coronary Intervention Complications: Algorithms From the 2018 and 2019 Seattle Percutaneous Coronary Intervention Complications Conference European Bifurcation Club White Paper on Stenting Techniques for Patients With Bifurcated Coronary Artery Lesions Prospective Elimination of Distal Coronary Sinus to Left Atrial Connection for Atrial Fibrillation Ablation (PRECAF) Randomized Controlled Trial Atrial Fibrillation Burden: Moving Beyond Atrial Fibrillation as a Binary Entity: A Scientific Statement From the American Heart Association

Original Research2017 Nov 14;70(20):2504-2515.

JOURNAL:J Am Coll Cardiol. Article Link

A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration

Natsumeda M, Florea V, Hare JM et al. Keywords: allogeneic; cardiac stem cell; ischemic cardiomyopathy; mesenchymal stem cell

ABSTRACT


BACKGROUND - The combination of autologous mesenchymal stem cells (MSCs) and cardiac stem cells(CSCs) synergistically reduces scar size and improves cardiac function in ischemic cardiomyopathy. Whereas allogeneic (allo-)MSCs are immunoevasive, the capacity of CSCs to similarly elude the immune system remains controversial, potentially limiting the success of allogeneic cell combination therapy (ACCT).


OBJECTIVES - This study sought to test the hypothesis that ACCT synergistically promotes cardiac regenerationwithout provoking immunologic reactions.


METHODS - Göttingen swine with experimental ischemic cardiomyopathy were randomized to receive transendocardial injections of allo-MSCs + allo-CSCs (ACCT: 200 million MSCs/1 million CSCs, n = 7), 200 million allo-MSCs (n = 8), 1 million allo-CSCs (n = 4), or placebo (Plasma-Lyte A, n = 6). Swine were assessed by cardiac magnetic resonance imaging and pressure volume catheterization. Immune response was tested by histologic analyses.


RESULTS - Both ACCT and allo-MSCs reduced scar size by -11.1 ± 4.8% (p = 0.012) and -9.5 ± 4.8% (p = 0.047), respectively. Only ACCT, but not MSCs or CSCs, prevented ongoing negative remodeling by offsetting increases in chamber volumes. Importantly, ACCT exerted the greatest effect on systolic function, improving the end-systolic pressure-volume relation (+0.98 ± 0.41 mm Hg/ml; p = 0.016). The ACCT group had more phospho-histone H3+ (a marker of mitosis) cardiomyocytes (p = 0.04), and noncardiomyocytes (p = 0.0002) than did the placebo group in some regions of the heart. Inflammatory sites in ACCT and MSC-treated swine contained immunotolerant CD3+/CD25+/FoxP3+ regulatory T cells (p < 0.0001). Histologic analysis showed absent to low-grade inflammatory infiltrates without cardiomyocyte necrosis.


CONCLUSIONS - ACCT demonstrates synergistic effects to enhance cardiac regeneration and left ventricular functional recovery in a swine model of chronic ischemic cardiomyopathy without adverse immunologic reaction. Clinical translation to humans is warranted.


Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.