CBS 2019
CBSMD教育中心
中 文

IVUS Guidance

Abstract

Recommended Article

Relation between baseline plaque features and subsequent coronary artery remodeling determined by optical coherence tomography and intravascular ultrasound Optical Frequency Domain Imaging Versus Intravascular Ultrasound in Percutaneous Coronary Intervention (OPINION Trial) Results From the OPINION Imaging Study A Combined Optical Coherence Tomography and Intravascular Ultrasound Study on Plaque Rupture, Plaque Erosion, and Calcified Nodule in Patients With ST-Segment Elevation Myocardial Infarction: Incidence, Morphologic Characteristics, and Outcomes After Percutaneous Coronary Intervention Successful Treatment of Unprotected Left Main Coronary Bifurcation Lesion Using Minimum Contrast Volume with Intravascular Ultrasound Guidance Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis Intravascular Ultrasound and Angioscopy Assessment of Coronary Plaque Components in Chronic Totally Occluded Lesions Catastrophic catheter-induced coronary artery vasospasm successfully rescued using intravascular ultrasound imaging guidance Intravascular Ultrasound Assessment of In-Stent Restenosis in Saphenous Vein Grafts

Original Research2019 Apr 1;123(7):1052-1059.

JOURNAL:Am J Cardiol. Article Link

Intravascular Ultrasound Assessment of In-Stent Restenosis in Saphenous Vein Grafts

Wolny R, Mintz GS, Maehara A et al. Keywords: in-stent restenosis; IVUS; saphenous vein grafts

ABSTRACT


Outcomes after percutaneous coronary interventions (PCI) in saphenous vein grafts (SVG) are inferior compared with native coronary arteries, but the mechanisms of SVG in-stent restenosis (ISR) have not been well-described. Thus, we aimed to evaluate the patterns of SVG ISR using intravascular ultrasound (IVUS) in 54 SVG ISR lesions. Stent underexpansion was defined as minimum stent area (MSA) <5 mm2. The time from stent implantation to presentation with ISR (9 BMS, 18 first-generation DES, and 27 second-generation DES) was 3.7 ± 3.0 years. IVUS-defined ISR patterns were categorized as mechanical (33%) or biological (67%). Mechanical patterns comprised 10 cases of stent underexpansion (MSA = 4.2 ± 0.9 mm2), 6 stent fractures or deformations, and 2 uncovered aorto-anastomotic lesions. Biological patterns comprised 19 cases of neoatherosclerosis, 13 excessive neointimal hyperplasia (NIH, 65 ± 11%), and 4 thrombi. Compared with biological patterns of ISR, mechanical patterns were more frequently located at the SVG anastomosis (72% vs 39%, p = 0.04) and at the SVG hinge motion site (55% vs 21%, p = 0.02). Although patients with mechanical patterns of ISR presented earlier than those with biological patterns (2.3 vs 4.4 years, p = 0.009), 61% of them were diagnosed >1 year after stent implantation. In conclusion, SVG ISR is dominated by biological patterns including neoatherosclerosis. Mechanical patterns of SVG ISR are associated with earlier presentation and location at graft anastomosis or hinge motion site.